;; rtbrick

Troubleshooting

Version 25.2.1.6, 12 January 2026

Table of Contents

1. Troubleshooting Guide Overview
1.1. Scope
1.2. Troubleshooting Approach
1.3. Supported Platforms
2. System Health
2.1. Container
2.1.1. Checking the Container Status

2.1.2. Recovering from a Container Failure

2.2. Brick Daemons
2.2.1. Checking the BD's Status
2.2.2. Core Dump
2.2.3. Recovering from a BD Failure
2.3. Running Configuration
2.3.1. Verifying the Configuration
2.3.2. Restoring a Configuration
2.4. License

2.4.1. Verifying a License

2.4.2. Restoring or Updating a License

2.5. Control Daemon
2.6. System Utilization
2.6.1. Memory and CPU Verification
2.6.2. Disk Space
3. Physical Layer
3.1. Link Failures
3.2. Hardware Failures
4. Application Layer
4.1. Fabric Operation
4.1.1. Fabric Protocols
4.1.2. Transport-layer Routing
4.1.3. Fabric Connectivity
4.2. Subscriber Services

4.2.1. Subscriber Sessions

N O O 00 60 60 0oy UT A DM W W W WDN —

N NN N NN N N DNDN -
N J oo DN O O

4.2.2. RADIUS
4.2.3. PPPOE Sessions
4.2.4. L2TP Sessions
4.2.5. Service-Layer Connectivity

4.3. Host Path Capturing
4.3.1. Physical Interface
4.3.2. Logical Interface
4.3.3. Shared Memory Interface
4.3.4. ACL-based Packet Capturing
4.3.5. Filtering by Protocol
4.3.6. Raw Format
4.3.7. PCAP File

5. Logging

5.1. Log Files
5.1.1. Log Files on the Host OS
5.1.2. Log Files in the LXC

5.2. BDS Logging
5.2.1. Enabling BDS Logging
5.2.2. Inspecting Log Tables

6. Reporting Issues to RtBrick

6.1. Support Portal login page

6.2. Opening a case

6.3. Debugger Information Utility Program
6.3.1. How to Retrieve Data Using the Utility Program
6.3.2. Periodic Data Collection

30
32
34
35
36
36
37
37
37
39
39
40
41
41
41
41
42
42
43
45
45
45
46
47
48

Troubleshooting

1. Troubleshooting Guide Overview

1.1. Scope

This troubleshooting guide outlines how to troubleshoot devices running RBFS. It is
intended for Network Operations teams typically performing monitoring, 1st or
2nd level support in a production environment. This guide helps the operator to
identify if it is an RBFS issue, and to narrow down the device and the process or
application that causes the issue. Troubleshooting for network engineering, or in-
depth analysis of BDS tables is out-of-scope of this guide. It is assumed that the
user of this guide is familiar with the basics of RBFS, as well as the basics of using a
Linux-based network operating system. This guide will be continuously extended
to cover failure scenarios which have occurred in production environments.

1.2. Troubleshooting Approach

There is no strict order in which various troubleshooting steps must be performed.
The best approach will always depend on the nature of the problem observed.
Generally speaking it is recommended to first perform some basic system health
checks as described in the System Health section. Next, it's a general best network
troubleshooting practice to verify the OSI layers from bottom to top. Applying this
best practice to an RBFS fabric, it is recommended to first verify the physical layer
as described in the Physical Layer section, then verify the operation of the fabric as
described in the Fabric Operation section, and finally verify services that run on
top of the fabric as described in the Application Layer section. Fabric and services
protocol operation can be verified using the built-in RBFS capture tool explained in
Host Path Capturing section. Section 5 describes RBFS logging capabilities that
apply to all layers. Finally, the Logging section provides guidance when and how to
report an issue to RtBrick. If you already know or have an indication what seems to
be the trouble, you can of course directly proceed to that area and skip all prior
steps proposed in this guide.

Troubleshooting

Application Layer

Subscriber Services
(Sessions, PPPoE, L2TP, VPNs)

Fabric
(IPv6 AD, BGPv6, SR, routing)

Capturing

Physical Layer
(Hardware, interfaces, optics)

Logging
(Log files, BDS logging)

System Health
(Container, BDs, utilization, configuration)

Troubleshooting Approach >

1.3. Supported Platforms

Not all features are necessarily supported on each hardware platform. Refer to the
Platform Guide for the features and the sub-features that are or are not supported
by each platform.

Troubleshooting

2. System Health

2.1. Container

The steps described in this section are performed on the host OS. For logging into
the host OS instead of into the Linux container, use SSH port 1022 instead of the
default port 22. Example:

ssh supervi sor @O0. 10. 0. 100 -p 1022

2.1.1. Checking the Container Status

The RBFS services run in a Linux container (LXC). If you are able to log in into the
container, obviously the container is running. If you are not able to log in, you can
verify the status of the container on the host OS, i.e. ONL on hardware switches, as
follows:

super vi sor @pi nel: ~$ sudo I xc-ls -f
NAME STATE AUTOSTART GROUPS | PV4 | PV6
rtbrick RUNNI NG 1 - 10.0. 3.10 -

On a hardware switch, there will be a single container called "rtbrick" and the state
shall be "Running". If the state is "Stopped" or "Failed", the container has failed and
the system is in a non-operational state.

2.1.2. Recovering from a Container Failure

If the container exists but is not running, you can start it using the rtb-image tool:
super vi sor @pi nel: ~$ sudo rtb-image container start rtbrick
Alternatively you can use the following Ixc command:

super vi sor @pi nel: ~$ sudo | xc-start -n rthbrick

If the container does not exist, or if starting it fail, you can try to recover by
restarting the device at the ONL layer:

Troubleshooting

super vi sor @pi nel: ~$ sudo reboot

2.2. Brick Daemons

2.2.1. Checking the BD's Status

RBFS runs multiple Brick Daemons (BD). You can verify the status of the daemons
using the Ubuntu system control (systemctl) or using the RBFS show command:
'show bd running-status'. The following commands will show all rtbrick services.
The status should be "running":

Example 1: Show output using the Ubuntu system control command

supervi sor@tbrick: ~$ sudo systenctl list-units | grep rtbrick

var-rthbrick-aut h. nount | oaded active nmount ed /var/rtbrick/auth

rtbrick-al ertmanager. service | oaded active runni ng rtbrick-al ert manager service
rtbrick-bgp. appd. 1. servi ce | oaded active runni ng rtbrick-bgp. appd. 1 service
rtbrick-bgp.iod. 1. service | oaded active runni ng rtbrick-bgp.iod.1 service
<...>

Example 2: Show output using the 'show bd running-status' command

supervi sor @t brick: op> show bd runni ng- st at us

Daenon St at us
al ert manager runni ng
bgp. appd. 1 runni ng
bgp.iod. 1 runni ng
confd runni ng
etcd runni ng
fibd runni ng
<...>

Please note the supported BDs differ by role and may change in a future release.
You can display further details as shown in the following example:

supervi sor@tbrick: ~$ sudo systenct!l status rtbrick-fibd. service

rtbrick-fibd.service - rtbrick-fibd service
Loaded: |oaded (/1ib/systend/systenirtbrick-fibd.service; enabled; vendor preset: enabl ed)
Active: active (running) since Mn 2020-10-19 05:01:16 UTC, 4h 41nin ago
Process: 248 ExecStartPost=/bin/bash -c [-f "/usr/local/bin/rtbrick-ens-service-event"] && {
/usr/bin/python3 /usr/local/bin/rtbr
Process: 240 ExecStartPre=/bin/nkdir -p /var/run/rtbrick/fibd_pi pe (code=exited, status=0/SUCCESS)
Process: 225 ExecStartPre=/usr/local/bin/rtbrick-bcm sdk-synlink.bash (code=exited, status=0/SUCCESS)
Process: 150 ExecStartPre=/usr/local/bin/rtbrick-vpp-startup-conf.bash (code=exited, status=0/SUCCESS)
Main PID: 246 (vpp_nain)
CGoup: /systemslice/rtbrick-fibd.service
246 /usr/local /bin/bd -i /etc/rtbrick/bd/config/fibd.json

Troubleshooting

If the status is "failed", the respective service or daemon has failed. A daemon
failure is a major issue, and depending on which BD has failed, the system is likely
to be in a non-operational state. If a BD has failed, inspect the system log (syslog)
file as well as the respective BD log file as described in the Logging section, then
proceed to sections Verifying the Configuration and Restoring a Configuration, and
finally report the failure to RtBrick as described in the Reporting Issues to RtBrick
section.

2.2.2. Core Dump

If a BD fails, it shall create a core dump file. A core dump is a file containing a
process's state like its address space (memory) when the process terminates
unexpectedly. These files are located in /var/crash/rtbrick. If you have identified or
suspect a BD failure, navigate to this directory and check for core dump files:

supervi sor@tbrick: ~$ cd /var/crash/rtbrick/
supervi sor@tbrick:/var/crash/rtbrick$ Is -1
-rwr--r-- 1 root root 3236888576 Apr 9 10:17 core.fibd_136_2020-04-09_10-16-52

If there is a core dump file, you can decode it using the GNU debugger tool like in
the following example:

supervi sor@thbrick:/var/crash/rtbrick$ sudo gdb bd core.fibd_136_2020-04-09_10- 16-52
<...>

At the resulting 'gdb' prompt, type and enter 'bt' for backtrace:

(gdb) bt

<...>

Report the resulting output to RtBrick as described in the Reporting Issues to
RtBrick section. Analysing the core dump file will typically require support from
RtBrick and is beyond the scope of this guide.

2.2.3. Recovering from a BD Failure

When a brick daemon (except FIBD) goes down, RBFS automatically restarts it up
to three times within a 420-second window. After the seven-minute window, the
daemon (except FIBD) can also be restarted with the “sudo systemctl restart
<daemon>" or “sudo service <daemon> restart” command. The FIBD daemon is

Troubleshooting

restarted up to three times within a 2678400-second window; after this, the device
must be restarted manually to bring up the FIBD daemon. This functionality has
been tested under multidimensional scale scenarios.

If the automatic restart does not succeed, you can use the Ubuntu system control
to start a daemon like in the following example:

supervi sor@tbrick: ~$ sudo systenctl start rtbrick-fibd.service

Alternatively you can recover from a BD failure by rebooting the container from
the Linux container shell:

supervi sor @t bri ck: ~$ sudo reboot

2.3. Running Configuration

2.3.1. Verifying the Configuration

A missing running configuration is another possible problem scenario. There are
several reasons why the system might be missing its configuration. Posting the
running configuration might have failed for example due an invalid configuration
syntax, or there was a connectivity issue between the device and the provisioning
system.

You can easily verify via CLI if there is a running configuration:

supervi sor @t brick: op> show config

If you suspect a configuration load issue, inspect the confd logs as well as the CtrlD
log as describe in the Logging section.

2.3.2. Restoring a Configuration

It depends on the customer deployment scenario how a running configuration
shall be applied or restored in case of an issue.

If the device already had a configuration previously, and you have saved it in afile,
you can simply load it via the CLI:

Troubleshooting

supervisor@tbrick: cfg> |oad config spinel-2020-10-19.json

If the device already had a configuration previously, and has been configured to
load the last configuration with the 'load-last-config: true' attribute, you can
restore it by rebooting the container at the Linux container shell:

supervi sor @t brick: ~$ sudo reboot

Otherwise you can also copy an automatically stored running configuration file
into your user directory and load it manually like in the following example:

super vi sor @ eaf 1: ~$ sudo cp
/var/rtbrick/commit_rol | back/766e102957bf 99ec79100c2acf a9dbb9/ confi g/ runni ng_confi g.j son runni ng_config.json

supervisor@eafl: ~$ I's -1

total 12

-rwr--r-- 1 root root 8398 Cct 21 09:45 runni ng_config.json
supervi sor @eaf 1: ~$ cli

supervi sor @eaf 1: op> switch-node config

Activating syntax node : cfg [config]

supervi sor @eaf 1: cfg> load config running_config.json
supervi sor @eaf1: cfg> comm t

If it's a newly deployed or upgraded device, and there is out-of-band connectivity
from your network management system, you can trigger the configuration from
your NMS.

If it's a newly deployed or upgraded device, and the configuration shall be applied
via a ZTP process from a local ZTP server, you need to reboot the device at the
ONL layer in order to trigger the ZTP process:

super vi sor @pi nel: ~$ sudo reboot

There is also an option to manually copy a configuration file to the device and into
the container. If you have copied a configuration file via an out-of-band path to the
ONL layer of the device, you can copy it into the container as follows. Please note
the name in the directory path needs to match the name of the container, like
"spine" in this example:

super vi sor @pi nel: ~$ cp spi nel-2020-10-19.json /var/lib/lxc/spinellrootfs/hone/supervisor/

Next you can load this configuration via the CLI as already described above:

Troubleshooting

supervisor@tbrick: cfg> |oad config spinel-2020-10-19.json

2.4. License

RBFS software requires a license to ensure its legitimate use. The license will be
automatically validated and enforced. After an initial grace period of 7 days, if a
license is missing or expired, RBFS will be restricted. The CLI as well as the BDS
APIs will not work anymore.

If all CLI commands do not work, the license might be missing or expired.

2.4.1. Verifying a License

You can verify the license via the CLI:

supervi sor @t brick: op> show system |icense
Li cense Validity:
Li cense index 1:
Start date : Fri Mar 12 06:43:25 GV +0000 2021
End date : Sat Mar 12 06:43:25 GJVI +0000 2022

The output will indicate if there is a valid license, no license, or if the license is
expired.

2.4.2. Restoring or Updating a License

The license is installed by configuration. If the license is missing but the device
already had a license configuration previously, please restore the configuration as
described in the Restoring a Configuration section above.

If the license is expired, please configure a new valid license key. If you do not have
a license key yet, please contact your RtBrick support or sales representative to
obtain a license.

2.5. Control Daemon

In addition to the Brick Daemons running inside the LXC container, there are some
RBFS services running on the host OS. The most important one is CtrlD (Control
Daemon). CtrID acts as the single entry point to the system. Verify the status of
CtrID:

Troubleshooting

super vi sor @pi nel: ~$ sudo service rtbrick-ctrld status
[....] Checking the rtbrick ctrld service: 3751
. ok

If the status is not "ok", restart, start, or stop and start CtrID:

supervi sor @pi nel: ~$ sudo service rthrick-ctrld restart

super vi sor @pi nel: ~$ sudo service rtbrick-ctrld stop
supervi sor @pi nel: ~$ sudo service rtbrick-ctrld start

If the status is "ok", but you suspect an issue related to CtrID, inspect the ctrld logs
as also described in section 5:

supervi sor @pi nel:/var/log$ nore rtbrick-ctrld.|og

2.6. System Utilization

There are cases when system-related information has to be checked: symptoms
like sluggish response, or daemons/processes crashing repeatedly can mean that
system resources are overutilized. In such cases first steps are to verify CPU,
memory, and disk. Before, it is good to remember the general architecture of an
RtBrick switch: we have the physical box, on which ONL (Open Network Linux) sits.
In ONL we run the LXC container (which has Ubuntu 22.04 installed), which in turn
has RBFS running inside it.

In the following sections we'll mainly concentrate on the LXC container
verifications, and will specify where the commands are executed in ONL. The order
in which the commands are shown in this section can also be used to do the basic
system troubleshooting.

2.6.1. Memory and CPU Verification

When suspecting the memory is overutilized, a quick way to verify that use free:
this command provides information about unused and used memory and swap
space. By providing the -h (human readable) flag, we can quickly see the memory
availability of the system:

supervisor@tbrick: ~$ free -h
t ot al used free shared buff/cache avai |l abl e
Mem 31G 4. 3G 24G 469M 2.3G 26G

Troubleshooting

Swap: 0B 0B 0B

The output from free is based on what the system reads from /proc/meminfo; of
importance are the available and used columns. The description of the fields can
be seen below (since man is not available on the switches):

free command fields description

Name Description

total Total amount of memory that can be used by the
applications.

used Used memory, which is calculated as total - free -

buffers - cache

free Unused memory.
shared Backwards compatibility, not used.
buff/cache The combined memory used by the kernel buffers

and page cache. This memory can be reclaimed at any
time if needed by the applications.

available Estimate of the amount of memory that is available
for starting new applications. Does not account swap
memory.

free has a few useful options that can be used:

+ -h - human readable: makes the output easier to read, by using the common
shortcuts for units (e.g M for mebibytes, G fo gibibytes etc)

« -t - total: will display a total at the bottom of each column (basically adding
physical+swap memory)

* -s - continuous print output (can be interrupted with Ctrl+C): by giving a
seconds value at which the output is refreshed, you will get a continuous
display of values (similar to the watch command; e.g free -s 5)

As it can be seen, free is a basic utility that displays relevant information in a
compressed format. It does not offer detailed or real-time information about the
running processes. As with the CPU, we can use top to obtain realtime information
about memory usage

Another way to check memory consumption, as well as CPU utlization, is to use

10

Troubleshooting

top; it is one of the most common ways to start troubleshooting a Linux-based
system, because it provides a wealth of information, and, in general, is a good
starting point for system troubleshooting.

Basically, this command allows users to monitor processes and CPU/memory
usage, but, unlike many other commands, it does so in an interactive way. top
output can be customized in many ways, depending on the information we want to
focus on, but in this guide we will not go through all the possible options top has.

A typical top output looks like the one below:

supervisor@tbrick: ~$ top

top - 21:12:41 up 1 day, 8:13, 1 users, |oad average: 2.66, 2.72, 2.73
Tasks: 46 total, 1 running, 45 sleeping, 0 stopped, 0 zonbie

% pu(s): 12.4 us, 8.5sy, 0.0 ni, 79.0id, 0.0 wa, 0.0 hi, 0.1 si, 0.0 st
Ki B Mem : 32785636 total, 26181044 free, 4135516 used, 2469076 buff/cache

Ki B Swap: 0 total, 0 free, 0 used. 27834804 avail Mem
Pl D USER PR NI VI RT RES SHR S %CPU %UEM TI ME+ COMVAND
260 root 20 0 10.563g 1.473g 177440 S 109.3 4.7 2280: 59 vpp_nain
108 r oot 20 0 406552 121648 46196 S 31.9 0.4 36:49.48 pppoed. 1
168 root 20 0 3203196 40704 9824 S 7.0 0.1 117:40.63 rtbrick-resnond
156 r oot 20 0O 461888 134852 59328 S 2.3 0.4 38:11.79 subscriberd. 1
112 root 20 0 438592 140644 46892 S 2.0 0.4 36:35.40 ignp.iod.1
166 root 20 0 408076 117936 43416 S 2.0 0.4 36:35.14 pimiod.1
176 root 20 0 392036 114596 40312 S 2.0 0.3 37:15.43 | 2tpd. 1
183 root 20 0 586944 144644 51256 S 1.7 0.4 38:27.94 bgp.iod.1
136 root 20 0 425212 147080 35636 S 1.3 0.4 22:50.32 resnond
193 root 20 0 1453416 929168 93672 S 0.7 2.8 17:09.07 confd
266 root 20 0 836892 107804 35424 S 0.7 0.3 17:59.60 pronetheus

<...output omtted...>

top output is divided in two different sections: the upper half (summary area) of
the output contains statistics on processes and resource usage, while the lower
half contains a list of the currently running processes. You can use the arrow keys
and Page Up/Down keys to browse through the list. If you want to quit, press “q” or
Ctrl+C.

On the first line, you will notice the system time and the uptime, followed by the
number of users logged into the system. The first row concludes with load average
over one, five and 15 minutes. “Load” means the amount of computational work a
system performs. In our case, the load is the number of processes in the R
(runnable) and D (uninterruptible sleep) states at any given moment.

A word on process states

6 We've mentioned above about a "process state". In Linux, a

11

Troubleshooting

process may be in of these states:

* Runnable (R): The process is either executing on the CPU, or
it is present in the run queue, ready to be executed.

* Interruptible sleep (S): The process is waiting for an event to
complete.

* Uninterruptible sleep (D): The process is waiting for an 1/0
operation to complete.

« Zombie (2): A process may create a number of child processes,
which can exit while the parent is still active. However, the
data structures that the kernel creates in memory to keep
track of these child processes have to be maintained until the
parent find out about the status of its child. These terminated
processes who still have associated data structures in memory
are called zombies.

While looking at the summary area, it is also good practice to check if any zombie
processes exist (on the Tasks row); a high number of zombies is indicative of a
system problem.

The CPU-related statistics are on the %CPU(s) row:

+ us: Time the CPU spends executing processes for users in “user space.”
* sy: Time spent running system “kernel space” processes.

* ni: Time spent executing processes with a manually set "nice" value (nice
values determine the priority of a process relative to others - higher nice values
of a process means that process will get a lower priority to run).

* id: CPU idle time.
« wa: Time the CPU spends waiting for I/0 to complete.
* hi: Time spent servicing hardware interrupts.
« si: Time spent servicing software interrupts.
+ st: Time lost due to running virtual machines (“steal time”).
For systems with multiple CPU cores, we can see the per-core load by pressing "1"

in the interface; another useful way of visualisation is to have a graphical display of
CPU load: this can be done by pressing "t" in the top interface. Below is an example

12

Troubleshooting

of top with both "1" and "t" pressed:

top - 12:11:56 up 1 day, 23:12, 4 users, |oad average: 2.76, 2.86, 2.97

Tasks: 58 total, 1 running, 57 sleeping, 0 stopped, 0 zonbi e

%Cpul 5.6/1.6 7000000

]

%Cpul : 59.8/40.2

2000 EEEETEETE T ey

%Cpu2 @ 19.0/2.0 20000

]

“pu3 @ 20.5/3.1 24000 TEEEEE e

]

%Cpud 2.1/3.4 5[]

]

%Cpu5 0.0/0.3 (o]

]

%Cpub 1.7/0.7 2[111]

]

%pu7 : 2.0/2.0 AL

]

G B Mem: 31.267 total, 24.086 free, 4. 059 used, 3.122 buff/cache

G B Swap: 0.000 total, 0. 000 free, 0. 000 used. 26.328 avail Mem
PI D USER PR NI VI RT RES SHR S %CPU %UEM TI ME+ COMVAND
260 root 20 0 10.783g 1.486g 191704 S 142.7 4.8 521:41.08 vpp_nain
148 root 20 0 399540 120656 44336 S 2.3 0.4 3:15.48 |ldpd
124 root 20 0 461888 137532 59312 S 2.0 0.4 8:22.26 subscriberd.1
136 root 20 0 485168 183640 58500 S 2.0 0.6 98:59.56 ignp.iod.1
180 root 20 0 588120 152332 52132 S 2.0 0.5 8:28.70 bhgp.iod.1
117 root 20 0 441872 137428 52904 S 1.7 0.4 9:59.74 pimiod.1
169 root 20 0 410648 131128 52828 S 1.7 0.4 8:50. 00 pppoed. 1
171 root 20 0 425068 148420 36016 S 1.7 0.5 4:50. 66 resnond
176 root 20 0 388964 116732 40536 S 1.7 0.4 8:08.61 |2tpd. 1

<...output onitted...>

The next two lines are dedicated to memory information, and as expected, the
“total”, “free” and “used” values have their usual meanings. The “avail mem” value
is the amount of memory that can be allocated to processes without causing more
swapping.

As with "t", the same thing can be done for displaying memory usage, but this time
we will press "m". It is also worth noting that we can change the units in which
memory values are displayed by pressing "E" (pressing repeatedly will cycle
through kibibytes, mebibytes, gibibytes, tebibytes, and pebibytes). The following
example shows the unit changed from kibi to gibibytes:

top - 12:25:19 up 1 day, 23:26, 4 users, |oad average: 3.29, 3.12, 3.05
Tasks: 58 total, 1 running, 57 sleeping, 0 stopped, 0 zonbi e
Upu(s): 17.2/6.9 2400 LN e

]

G B Mem: 31. 267 total, 24.081 free, 4. 063 used, 3. 123 buff/cache
G B Swap: 0.000 total, 0. 000 free, 0. 000 used. 26. 323 avail Mem
<...output omtted...>

Moving to the lower half of the output (the task area), here we can see the list of
processes that are running on the system. Below you can find a short explanation
for each of the columns in the task area:

13

Troubleshooting

top task area columns description

Name Description

PID process ID, a unique positive integer that identifies a
process.

USER the "effective" username of the user who started the

process; Linux assigns a real user ID and an effective
user ID to processes; the second one allows a process
to act on behalf of another user (e.g.: a non-root user
can elevate to root in order to install a package).

PR and NI NI show the "nicety" value of a process, while the "PR"
shows the scheduling priority from the perspective of
the kernel. Higher nice values give a process a lower
priority.

VIRT, RES, SHR and %MEM these fields are related to the memory consumed by
each process. “VIRT” is the total amount of memory
consumed by a process. “RES” is the memory
consumed by the process in RAM, and “%MEM" shows
this value as a percentage of the total RAM available.
“SHR" is the amount of memory shared with other

processes.
S state of the process, in single letter form.
TIME+ total CPU time used by the process since it started, in
seconds/100.
COMMAND the name of the process.

From a troubleshooting standpoint, check for processes that
@ consume large amounts of CPU and/or memory. In the task area,
w

of interest are the RES, for memory, and %CPU columns.

For a cleaner (and possibly more relevant) output of top, we can sort only the
active processes to be displayed, by running top -i, and we can sort even further by
CPU usage, by pressing Shift+P while running top (or by initially running top -o
%CPU):

supervisor@thbrick: ~$ top -i

top - 23:55:20 up 1 day, 10:56, O users, |oad average: 2.98, 2.87, 2.79
Tasks: 46 total, 1 running, 45 sleeping, 0 stopped, 0 zonbi e

14

Troubleshooting

% pu(s): 9.6 us, 6.5sy, 0.0ni, 83.7id, 0.0wa, 0.0 hi, 0.3si, 0.0 st
KiB Mem : 32785636 total, 26168764 free, 4137340 used, 2479532 buff/cache

Ki B Swap: 0 total, 0 free, 0 used. 27832552 avail Mem
PI D USER PR NI VI RT RES SHR S %CPU %vEM TI ME+ COVVAND
260 root 20 0 10.564g 1.474g 177952 S 110.0 4.7 2475:13 vpp_main
112 root 20 0 438592 140908 47112 S 2.0 0.4 39:40.10 ignp.iod.1
129 root 20 0 399544 118640 44244 S 2.0 0.4 16:40.52 |ldpd
156 root 20 0 461888 134852 59328 S 2.0 0.4 41:22.55 subscriberd.1
166 root 20 0 408076 117936 43416 S 2.0 0.4 39:39.87 pimiod.1
183 root 20 0 586944 144644 51256 S 2.0 0.4 41:42.46 bgp.iod.1
108 root 20 0 406552 122028 46576 S 1.7 0.4 39:57.25 pppoed. 1
136 root 20 0 425212 147080 35636 S 1.7 0.4 24:43.47 resnond
176 root 20 0 392036 114596 40312 S 1.7 0.3 40:23.35 12tpd.1
193 root 20 0 1453420 929224 93728 S 1.0 2.8 18:35.60 confd
168 root 20 0 3424392 41132 9824 S 0.7 0.1 127:35.58 rthrick-resnond
125 root 20 0 434464 132772 50396 S 0.3 0.4 2:54.41 nribd
215 root 20 0 1527800 12736 5952 S 0.3 0.0 0:10.43 rtbrick-restcon
266 root 20 0 837180 107808 35424 S 0.3 0.3 19:30.23 pronetheus

As with the example above, we can also filter by any column present in the task
area.

If, for example, a process is hogged and starts consuming too much CPU or
memory, thus preventing the good functioning of the system, top offers the option
to kill the respective process: you can press "k" and enter the process ID of the
process to be killed; in the example below, the operator will terminate the cron
process (make sure to run top as root when terminating processes spawned with
the root user):

top - 07:39:16 up 1 day, 18:40, 3 users, |oad average: 2.89, 2.90, 2.91
Tasks: 56 total, 2 running, 54 sleeping, 0 stopped, 0 zonbie

%Cpu(s): 10.7 us, 7.5 sy, 0.0 ni, 81.7id, 0.0wa, 0.0 hi, 0.2 si, 0.0 st
Ki B Mem : 32785636 total, 26042276 free, 4145480 used, 2597880 buff/cache

Ki B Swap: 0 total, 0 free, 0 used. 27766808 avail Mem

PID to signal/kill [default pid = 260] 126
PI D USER PR N VI RT RES SHR S %CPU %EM TI ME+ COVVAND
260 root 20 0 10.559g 1.471g 181376 R 106.2 4.7 174:41.75 vpp_nain

12192 supervi+ 20 0 39572 3564 3048 R 6.2 0.0 0:00.01 top

1 root 20 0 77448 8740 6840 S 0.0 0.0 0:00.27 systenmd

21 root 19 -1 70268 12152 11476 S 0.0 0.0 0: 00. 37 systend-journa
33 root 20 0 42584 3992 2980 S 0.0 0.0 0:00.20 systend-udevd
75 systemd+ 20 0 71860 5388 4792 S 0.0 0.0 0: 00. 03 syst end- net wor k
81 systenmd+ 20 0 70640 5088 4532 S 0.0 0.0 0: 00. 05 systend-resol ve
107 root 20 0 1604588 15864 8376 S 0.0 0.0 0:00.77 rtbrick-hostcon
109 root 20 0 612252 189544 90092 S 0.0 0.6 0:10.33 etcd
114 sysl og 20 0 263036 4164 3652 S 0.0 0.0 0:00.10 rsysl ogd
117 root 20 0 408076 119448 43908 S 0.0 0.4 2:50.89 pimiod.1
120 root 20 0 503648 151880 66984 S 0.0 0.5 0:11.60 ifnd

<...output omtted...>

Alternatively, ps can be used; ps is an utility for viewing information related with
the processes on a system; it's abbreviated from "Process Status", and gets its

15

Troubleshooting

information from /proc. It can be used in conjunction with tools like top, or
standalone. Usually you would run ps after seeing a summary with top, for
example. ps is useful to get more information about some specific process (for
example the command - or arguments - a process is executed with). Normally ps is
executed with one or more options, in order to obtain a meaningful output.

Common ps options

Name Description

e Show all processes

u Select processes by effective user ID (EUID) or name
f Full-format listing (there is also F - Extra full format)
L Show threads

Some common example are:

+ listing all running processes, detailed

supervi sor@tbrick: ~$ ps -ef

u D PID PPID C STIME TTY TI ME CMD

r oot 1 0 0 17:07 2 00: 00: 00 /sbin/init

r oot 23 1 0 17:07 ? 00: 00: 00 /1ib/systend/ systend-j ournal d

r oot 31 1 0 17:07 ? 00: 00: 00 /lib/systend/ systend-udevd

syst enmd+ 53 1 0 17:07 ? 00: 00: 00 /i b/ systemd/ syst end- net wor kd

syst end+ 94 1 0 17:07 ? 00: 00: 00 /i b/systemd/ systend-resol ved

r oot 136 1 117:07 ? 00: 03: 46 /usr/local /bin/bd -i /etc/rtbrick/bd/config/lldpd.json
sysl og 138 1 0 17:07 ? 00: 00: 00 /usr/sbin/rsyslogd -n

r oot 139 1 117:07 ? 00: 06: 53 /usr/local /bin/bd -i /etc/rtbrick/bd/config/pimiod.json
r oot 142 1 117:07 ? 00: 07: 06 /usr/local /bin/bd -i /etc/rtbrick/bd/config/bgp_iod.json
r oot 145 1 0 17:07 ? 00: 00: 18 /usr/local /bin/bd -i /etc/rtbrick/bd/config/isis_appd.json

<...output omtted...>

« listing all running processes and threads

supervi sor@tbrick: ~$ ps -eLf

u D PID PPID LW C NLWP STIME TTY TI ME CMD

<...output omtted...>

r oot 136 1 136 1 1 17:07 ? 00: 03: 48 /usr/local /bin/bd -i
/etc/rtbrick/bd/ config/lldpd.json

r oot 139 1 139 1 1 17:07 ? 00: 06: 56 /usr/local /bin/bd -i
/etc/rtbrick/bd/ config/pimiod.json

r oot 142 1 142 1 1 17:07 ? 00: 07: 09 /usr/local /bin/bd -i
/etc/rtbrick/bd/ config/bgp_iod.json

r oot 145 1 145 0 1 17:07 ? 00: 00: 18 /usr/local /bin/bd -i
/etc/rtbrick/bd/ configl/isis_appd.json

r oot 147 1 147 1 1 17:07 ? 00: 07: 04 /usr/local/bin/bd -i

/etc/rtbrick/bd/ config/isis_iod.json
<...output omtted...>

r oot 157 1 157 0 1 17:07 ? 00: 00: 18 /usr/l ocal /bin/bd -i

/etc/rtbrick/bd/ config/policy_server.json

r oot 160 1 160 0 19 17:07 ? 00: 00: 00 /usr/local /bin/rtbrick-hostconfd -proxy-onl-config
http://10.0. 3. 1: 22022

r oot 160 1 202 O 19 17:07 ? 00: 00: 00 /usr/local/bin/rtbrick-hostconfd -proxy-onl-config
http://10.0.3.1: 22022

r oot 160 1 203 O 19 17:07 2 00: 00: 00 /usr/local/bin/rtbrick-hostconfd -proxy-onl-config

16

Troubleshooting

http://10.0.3.1: 22022
<...output omitted...>

r oot 165 1 165 O 3 17:07 ?
agent
r oot 314 1 349 0 22 17:07 ?

--config.file=/etc/pronetheus/al ertmanager.yni
root 314 1 366 0 22 17:07 ?
--config.file=/etc/pronetheus/al ertmanager.yni
root 314 1 367 0 22 17:07 ?
--config.file=/etc/pronetheus/al ertmanager.yni
<...output omtted...>

« listing all processes run by a user

supervi sor@tbrick: ~$ ps -u syslog -f

u D PID PPID C STIME TTY
sysl og 138 1 0 17:07 ?
supervi sor@tbrick: ~$

00: 00: 18 /usr/ bi n/ python3 /usr/local /bin/rtbrick-resnond-

00: 00: 01 /usr/ | ocal / bi n/ al ert manager

--storage. pat h=/var/db/ al ert manager

00: 00: 01 /usr/ | ocal / bi n/ al ert manager

--storage. pat h=/var/db/ al ert manager

00: 00: 01 /usr/ | ocal / bi n/ al ert manager

- -storage. pat h=/var/ db/ al ert manager

TI ME CMVD
00: 00: 00 /usr/sbin/rsyslogd -n

Along with ps you can use pgrep and pkill to search, and then terminate a process:

supervi sor@tbrick: ~$ pgrep -u root -a
1 /sbhin/init

23 /1ibl/systend/ systend-journald

31 /1ib/systend/ syst end-udevd

136 /usr/local/bin/bd -i /etc/rtbrick/bd/config/lldpd.json

139 /usr/local /bin/bd -
142 /usr/local /bin/bd -
145 /usr/local /bin/bd -

149 /usr/local /bin/bd -
152 /usr/local /bin/bd -

/etc/rtbrick/bd/ config/pimiod.json
/etc/rtbrick/bd/ config/bgp_iod.json
letc/rtbrick/bd/ config/isis_appd.json

letc/rtbrick/bd/config/etcd.json
letc/rtbrick/bd/ config/resnond.json

i
i
i
i

147 /usr/local/bin/bd -i /etc/rtbrick/bd/config/isis_iod.json
i
i
i

154 /usr/local /bin/bd -
<...output omtted...>
314 /usr/ 1 ocal / bi n/ al ert manager
--storage. pat h=/var/ db/ al ert manager
316 /usr/ | ocal/ bi n/ promnet heus
--storage. t sdb. pat h=/ var/ db/ pr onet heus
<...output onmitted...>

supervi sor@tbrick: ~$ pkill promnetheus

2.6.2. Disk Space

letc/rtbrick/bd/ config/staticd.json
--config.file=/etc/pronetheus/al ertmanager.yni

--config.file=/etc/prometheus/pronetheus.ym --storage.tsdb.retention.tinme=5d

Another issue that can affect the functioning of the system is the lack of disk
space; in severe situations, the system will become unusable. From this
standpoint, checking disk space is one of the first things you do when doing first

troubleshooting steps.

On Linux-based systems there are two main tools to check disk space: du (disk
usage) and df (disk free). As in the case with ps and top, it is important to
understand the uses cases for the two, and how they can complement each other.

@ Normally, you would first use df to have a quick look of the overall
" system disk space, then you would use du to look deeper into the

17

Troubleshooting

problem. This approach is due to how these two tools work: df
reads the superblocks only and trusts it completely, while du
traverses a directory and reads each object, then sums the values
up. This means that, most of the times, there will be differences
between the exact values reported by these two; you can say that
df sacrifices accuracy for speed.

First, we can look at the total space on the switch (we run the command in ONL):

super vi sor @916- nbgl: ~$ df -h

Fi | esystem Size Used Avail Use% Mounted on

devt npfs 1. 0M 0 1.0M 0% /dev

/ dev/ sdb7 113G 5.2G 102G 5%/

/ dev/ sdb6 2.0G 1.2G 677M 64%/mt/onl/i mages
/ dev/ sdbl 256M 252K 256M 1%/ boot/ efi

/ dev/ sdb4 120M 43M 69M 39% / mt/ onl / boot

/ dev/ sdb5 120M 1.6M 110M 2%/ mmt/onl/config
tmpfs 3.2G 720K 3.2G 1%/run

tnpfs 5.0M 0 5.0M 0% /run/lock

tnpfs 6. 3G 0 6.3G 0% /run/shm
cgroup 12K 0 12K 0%/ sys/ fs/ cgroup
tmpfs 6.0G 546M 5.5G 9% /shm

super vi sor @916- nbgl: ~$

We then verify container disk space, by looking at the general snapshot of the
system:

supervisor@tbrick:~$ df -h

Fi |l esystem

Size Used Avail Use% Mounted on

/var/ cache/ rtbrick/i magest ores/ 847c6ecd- df 58- 462e- a447- 38c620al2f el/ r bf s- cont/ r bf s- accessl eaf - gnmx- 20. 10. 0-
g4i nt ernal . 20201103065150+Bnvpn. C1067d22e/rootfs 113G 5.1G 102G 5%/

none

492K 0 492K 0%/ dev

/ dev/ sdb7

113G 5.1G 102G 5% /var/log

tpfs

6.0G 546M 5.5G 9% /shm

devt npfs

1.0M 0 1.0M 0%/dev/nem
tnpfs

16G 4.3M 16G 1% /dev/shm
tnpfs

16G 9.0M 16G 1% /run

tpfs

5.0M 0 5.0M 0%/run/lock
tnpfs

16G 0 16G 0% /sys/ fs/cgroup
tnpfs

3.2G 0 3.2G 0%/ run/user/ 1000

supervi sor@tbrick: ~$

At a quick glance we can see here that the root partition has a 5% usage, from a
total of 113GB. You will also notice that /dev/sdb7 in the container has the same
values as the output reported in ONL. It also has the same total size and same

18

Troubleshooting

used space as the root filesystem. Notice the usage of the -h flag, which makes the
output easier to read ("human readable").

Then you can verify the details of a specific directory, let's say you want too see
how much disk space is used by user files in /usr:

supervisor@tbrick:~$ I's -I

total 44

dr wxr - Xr - x
dr wxr - xr - x
dr wxr - xr - x
dr wxr - xr - x
dr wxr - Xr - x
dr wxr - Xr - x
dr wxr - Xr - x
dr wxr - Xr - x

1
2
37

RN R

2

r oot
r oot
root
r oot
root
r oot
r oot
r oot

root
root
r oot
root
root
r oot
r oot
r oot

4096
4096
4096
4096
4096
4096
4096
4096

supervi sor@tbrick: ~$ du -sh
2.6G [usr/
supervisor@tbrick: ~$ Is -1

total 44

dr wxr - Xr - x
dr wxr - Xr - x
dr wxr - Xr - x
dr wxr - Xr - x
dr wxr - Xr - x
dr wxr - xr - x
dr wxr - xr - x
dr wxr - xr - x

We then go even deeper, to check what takes most space in the /usr directory

1
2
37

N RN R e

r oot
r oot
r oot
r oot
r oot
r oot
root
r oot

r oot
r oot
r oot
r oot
root
root
root
root

4096
4096
4096
4096
4096
4096
4096
4096

[usr/

Nov 3

Apr 24
Nov

&
<
W wWwwww

Apr 24

[usr/
[usr
Nov 3

Apr 24
Nov

supervi sor@tbrick: ~$ du -h /usr/ |
2.6G [usr/
1.8G [usr/| ocal
1.7G lusr/local/lib
506M lfusr/lib

169M [usr/share

11: 54

2018
06: 59
11: 54
06: 57
06: 59
11: 54

2018

11: 54

2018
06: 59
11: 54
06: 57
06: 59
11: 54

2018

sort

bin
ganes

i ncl ude
lib

| ocal
shin
share
src

bin
ganmes

i ncl ude
lib

| ocal
shin
share
src

-rh | head -5

We used du in conjunction with sort (options r - reverse the result -, and h -
compare human readable numbers -), as well as with head, to get only the biggest
5 directories from the output.

19

Troubleshooting

3. Physical Layer

3.1. Link Failures

Link failures are one of the most common issues. First, verify the status of the
interface using one of the following show commands:

supervi sor@tbrick: op> show interface summary
supervi sor @t brick: op> show interface <ifp-nanme>

The administrative, link, and operational status should be "Up". Depending on your
configuration, logical interfaces should have been created and IP addresses should
be assigned like in this example:

supervi sor@tbrick: op> show interface ifp-0/0/52

Interface Adm n Li nk Oper | Pv4 Address | Pv6 Address
ifp-0/0/52 Up Up Up
ifl-0/0/52/13 Up Up Up

f e80: : ba6a: 97ff: f ea5: 923d/ 128

Verify further details of the interface using the 'detail' version of the show
command:

supervi sor@tbrick: op> show interface ifp-0/0/52 detail
Interface:ifp-0/0/52
Admi n/ Li nk/ Oper ati onal status: Up/ Up/ Up
Speed configured: 100G
Speed mexi mum 100G
Dupl ex: Ful |
Aut onegoti ati on: Disabl ed
Encapsul ati on node: ieee
MTU: 16360
Maxi mum frane size: 16360
Interface type: ethernet
Interface index: 124929
MAC:. b8: 6a: 97: ab: 92: 3d
Uptine: Mon Nov 23 14:18:46 GMVI +0000 2020
Description: Physical interface #52 fromnode 0, chip O
Packet statistics:
Rx packets: 263892 Tx packets: 280356
Rx bytes: 23377027 Tx bytes: 154437883
Interface: ifl-0/0/52/13, Instance: default
Adm n/ Li nk/ Oper ati onal status: Up/ Up/ Up
| Pv4/ 1 Pv6/ MPLS St atus: Up/ Up/ Up
| Pv4/1 Pv6/ MPLS MTU: 1500/ 1500/ 1500
Interface type: Logical Sub interface
Interface i ndex: 106497
MAC: b8: 6a: 97: a5: 92: 3d
| Pv4 Address | Pv6 Address
- f e80: : ba6a: 97f f: f ea5: 923d/ 128

20

Troubleshooting

Packet statistics:

I ngress forwarded packets: 262991 I ngress forwarded bytes: 23313212
I ngress drop Packets: O I ngress drop bytes: O

Egress forwarded packets: 15490 Egress forwarded bytes: 3063609
Egress drop packets: 0O Egress drop bytes: O

Next, verify the interface statistics. These will show common link errors:

supervi sor @t brick: op> show interface <ifp-name> statistics

You can also inspect the following BDS tables for even more detailed information:

supervi sor@tbrick: op> show datastore ifnd table global.interface. physical
supervi sor@tbrick: op> show datastore ifnd table global.interface.!| ogical

supervi sor @t brick: op> show datastore ifnd table global.interface. address
supervi sor @t brick: op> show datastore fibd table |ocal.bcm gnx. port

Identify the type of optics and check the optics data:

supervi sor@tbrick: op> show optics inventory
supervi sor @t brick: op> show optics interface <ifp-name>

The output of the 'show optics' command will display the Tx and Rx levels like in
the following example. In addition, particularly check for warnings or alarms. These
will typically indicate the cause of the issue. Please note the 'show optics'
command does not work for passive Direct Attach Cable (DAC).

supervi sor @t brick: op> show optics interface ifp-0/0/52
Physi cal Interface: ifp-0/0/52

Lane |d 1

Laser bias current : 85.100 mA

Laser tx power : 1.1107 nW/ 0.46 dBm
Laser rx power : 0.5521 nW/ -2.58 dBm
Mbodul e tenperature : 30.41 degree cel sius
Mbdul e vol t age : 3.199 V

TX di sabl e . fal se

H gh power class enable : true

Laser TX | oss of signal . false

Laser TX | oss of |ock . fal se

Laser RX | oss of signal : fal se

Laser RX | oss of |ock . fal se

<...>

You can also show detailed optics information using the BDS tables:

supervi sor@tbrick: op> show datastore resnond tabl e gl obal.chassis_0.resource.optics.inventory
supervi sor@tbrick: op> show datastore resnond tabl e gl obal.chassis_0.resource.optics. nodul e

21

Troubleshooting

If there are continuous or reoccurring interface issues like interface flapping,
enable logging for the ifm module and inspect the log table as described in the

Logging section.

3.2. Hardware Failures

If you suspect a hardware failure or issue, verify sensor information available at
the RFBS container layer. Please note this section applies to hardware switches
only. Sensor information is not available on virtual deployments.

supervi sor @t bri ck:
supervi sor @t bri ck:
supervi sor @t bri ck:
supervi sor @t bri ck:

op> show sensor system| ed
op> show sensor power-supply
op> show sensor fan

op> show sensor tenperature

The sensor information might show hardware failures like in this example:

supervi sor @t brick: op> show sensor power-supply

Nanme Current In Current Qut Voltage In Voltage Qut Power In Power Qut St at us
PSU- 1 0 m 11593 mA 0 nv 11984 nv 0 nw 139000 mW PRESENT
PSU- 2 0 M 0 m 0 nv 0 nv 0 nmw 0 nWw PRESENT, FAI LED

Next, verify the status of the hardware at the ONL layer:

super vi sor @pi nel: ~# sudo onl pdunp

Due to a known issue, the 'sudo onlpdump' command does not

0 work in the current release for the user supervisor. As a

workaround switch to user root using 'sudo -i' and then enter the
'‘onlpdump' command.

The onlpdump tool provides detailed information about the system and its
components, and might show hardware failures like in the following example:

super vi sor @pi nel: ~# sudo onl pdunp

<...>

psu @1 = {
Descri ption:
Mbdel : NULL
SN: NUL L

PSU- 1

Status: 0x00000003 [PRESENT, FAI LED]
Caps: 0x00000000

Vi n: 0
Vout : 0
lin: 0

22

Troubleshooting

| out : 0
Pi n: 0
Pout : 0

If you have identified or suspect an optics issue, verify the status of the optics at
the ONL layer. The onlpdump -S tool will show the type of optic installed:

super vi sor @pi nel: ~# sudo onl pdunp -S

Port Type Media Status Len Vendor Model SI'N
0 NONE
<...>
52 100GBASE- CR4 Copper 3m Fi berstore QSFP28- 100G DAC 12706060007
<...>

The following example shows an optic failure:

supervi sor @ ocal host: ~# sudo onl pdunp -S
Port Type Medi a Status Len Vendor Mbdel S/I'N

<...>

06-27 08:27:49.823107 [x86_64_accton_as5916_54xk] Unable to read eeprom from port(51), size is different!
51 Error E_I NTERNAL

23

Troubleshooting

4. Application Layer

4.1. Fabric Operation

4.1.1. Fabric Protocols

Verify L2 connectivity using LLDP. LLDP allows to quickly verify the topology and
connectivity between your devices:

supervi sor @t bri ck>LEAFO1: op> show || dp nei ghbor

Nei ghbor name Status Renote port ID Local port ID Nei ghbor MAC address Last received Last
sent

spi ne2 Up mem f-0/1/1 mem f-0/1/1 7a:52:68: 60: 01: 01 0:00: 11 ago

0:00: 12 ago

spi ne2 Up mem f-0/1/2 mem f-0/1/2 7a:52:68: 60: 01: 02 0: 00: 06 ago

0: 00: 09 ago

leaf 1 Up mem f-0/1/1 mem f-0/2/1 7a:47:fc:60:01: 01 0: 00: 07 ago

0: 00: 10 ago

| eaf 2 Up mem f-0/1/1 mem f-0/2/2 7a: 28: 3b: 60: 01: 01 0:00: 13 ago

0: 00: 14 ago

Verify IPv6 neighbor discovery:

supervi sor @t bri ck>LEAFO1: op> show nei ghbor ipv6

I nstance MAC Addr ess Interface | P Addr ess Dynamic Entry
Ti me

defaul t 7a:52:68: 60: 01: 01 mem f-0/1/1/1 fd3d: 3d: 100: a: : 2 true Wed Nov
18 18:33:28

defaul t 7a:52:68: 60: 01: 01 mem f-0/1/1/1 fe80::7852: 68ff:fe60: 101 true Wed Nov
18 18:32:30

defaul t 7a:52: 68: 60: 01: 02 mem f-0/1/2/1 fe80::7852: 68ff:fe60:102 true Wed Nov
18 18:32:30

def aul t 7a: 47:fc:60:01: 01 nem f-0/2/1/1 fe80::7847:fcff:fe60: 101 true Wed Nov
18 18:32:32

def aul t 7a: 28: 3b: 60: 01: 01 nmem f-0/2/2/1 fe80::7828: 3bff:fe60: 101 true Fri Nov
20 14:23:27

If there is no LLDP peer or no IPv6 neighbor discovered on an interface, it typically
indicates a connectivity issue. BGPv6 peers cannot be established. At this point,
proceed with the following steps:

+ Verify the interface as described in the Link Failures section.

* Verify connectivity to the neighbor using Ping as described in the Fabric
Connectivity section.

* Check the running configuration for the fabric interfaces.

If IPv6 neighbors have been discovered, verify the BGP sessions. BGP peers should
have been auto-discovered on all fabric interfaces. If a BGP session is operational,

24

Troubleshooting

it will be in "Established" state. The "PfxRcvd" and "PfxSent" show that BGP routes
are exchanged:

supervi sor @t bri ck>LEAFO01: op> show bgp peer
I nstance name: default

Peer Renpote AS State Up/ Down Ti e Pf xRcvd
Pf xSent

leaf1 4200000201 Est abl i shed 4d: 17h: 00m 27s 4

14

spi ne2 4200000100 Est abl i shed 0d: 00h: 05m 11s 8

14

If IPv6 neighbors have been discovered, but BGP sessions are not established,
perform the following steps:

* Inspect the output of the 'show bgp peer detail' command.
*+ Check the BGP running configuration.

 Enable and verify BDS logging for bgp.iod and the BGP module as described in
the Logging section.

If BGP sessions are established and routes are being exchanged, BGP will typically
be fully operational. Next, verify BGP routes for IPv6 unicast and IPv6 labeled
unicast:

supervi sor @t bri ck>LEAFO1: op> show bgp rib-local ipv6 unicast
supervi sor @t bri ck>LEAFO1: op> @pi nel: op> show bgp rib-1ocal ipv6 | abel ed-
uni cast

If you have multiple instances with a high number of routes, you can optionally
filter the output using the 'instance default' command option. For both IPv6 and
IPv6 LU, there should be one or multiple route(s) for each of the spine and leaf
IPv6 loopback addresses like in this example:

supervi sor @t bri ck>LEAFO1: op> show bgp rib-local ipv6 unicast

Instance: default, AFI: ipv6, SAFI: unicast

Prefix Snd- Pat h-1D Rcv- Pat h-1D Peer Next -
Hop Up Tine

fd3d: 3d: 0: 99::1/128 513421047 2

0d: 00h: 00m 48s

fd3d: 3d: 0: 99:: 2/ 128 748525752 0 fe80::7852: 68ff: fe60: 101
fe80::7852: 68ff: fe60: 101 0d: 00h: 00m 36s

fd3d: 3d: 0: 99: : 3/ 128 30278035 0 fe80::7847: fcff:fe60: 101
fe80::7847:fcff:fe60: 101 0d: 00h: 00m 36s

fd3d: 3d: 0: 99: : 4/ 128 748525752 0 fe80::7852: 68f f: fe60: 101
fe80::7852: 68ff: fe60: 101 0d: 00h: 00m 36s

25

Troubleshooting

4.1.2. Transport-layer Routing

The BGP routes described above are subscribed by ribd. ribd will the select the
best routes from multiple sources and add them to the actual routing table. In this
guide we refer to the connectivity between the fabric devices as transport-layer, as
opposed to the service-laver connectivity in the VPNs which are deployed on top.

Verify the IPv6 unicast and IPv6 labeled unicast routing tables. Same like for the
BGP commands, you can optionally filter the output using the 'instance default'
command option:

supervi sor @t bri ck>LEAFO1: op> show route ipv6 unicast
supervi sor @t bri ck>LEAFO1: op> show route ipv6 | abel ed-uni cast

For both IPv6 and IPv6 LU, there should be one or multiple route(s) for each of the
spine and leaf IPv6 loopback addresses, each with a valid IPv6 nexthop address
and exit interface. Assuming you are using BGPv6 as a fabric protocol, i.e. no
additional protocols like IS-IS in the default instance, these will be BGP routes only.
If all expected routes exist, it typically indicates that the fabric is working fine from
a control-plane perspective.

4.1.3. Fabric Connectivity

In order to troubleshoot date-plane issues, you can verify connectivity using the
RBFS ping tool. First, verify connectivity to the auto-discovered link-local neighbors.
Specify the interface on which the neighbor has been discovered as the source
interface. Example:

supervi sor @t bri ck>LEAFO1: op> show nei ghbor ipv6

I nst ance MAC Addr ess Interface | P Addr ess Dynanmic Entry
Ti me

def aul t 7a:52:68:60:01: 01 mem f-0/1/1/1 fe80::7852: 68ff:fe60: 101 true Wed Nov
18 18:32:30

<...>

supervi sor @t bri ck>LEAFO01: op> ping fe80::7852: 68ff:fe60: 101 source-interface nenm f-0/1/1/1
68 bytes from fe80::7852: 68ff:fe60: 101: icnp_seq=1 ttl=63 tinme=8.6318 ns
S,

Statistics: 5 sent, 5 received, 0% packet |oss

Second, verify connectivity to the spine and leaf loopback addresses learned via
BGP. As a source address that is advertised via BGP in the default instance, so that
it is reachable from the remote device. This depends on your deployment, but
typically it is the loopback interface in the default instance. Example:

26

Troubleshooting

supervi sor @t bri ck>LEAFO1: op> show route ipv6 unicast
Instance: default, AFlI: ipv6, SAFI: unicast

Pref i x/ Label Sour ce Pr ef Next Hop
Interface
fd3d: 3d: 0: 99::1/128 direct 0 fd3d:3d:0:99::1
lo-0/0/0/1
fd3d: 3d: 0: 99:: 3/ 128 bgp 20
fe80::7847: fcff:fe60: 101 mem f-0/2/1/1
fd3d: 3d: 0: 99:: 4/ 128 bgp 200
<...>

supervi sor @t bri ck>LEAFO1: op> ping fd3d: 3d: 0:99::3 source-interface |0-0/0/0/1
68 bytes from fd3d:3d:0:99::3: icnp_seq=1 ttl=63 tinme=10.0001 ns
<...>

Next, verify MPLS connectivity by specifying IPv6 LU with the ping tool. Example:

supervi sor @t bri ck>LEAFO1: op> ping fd3d: 3d: 0:99::3 instance default afi ipv6 safi
| abel ed- uni cast source-interface |0-0/0/0/1

68 bytes fromfd3d: 3d:0:99::3: icnp_seq=1 ttl=63 tinme=2.8520 ns

<...>

If the fabric connectivity is broken, use the RBFS traceroute tool to narrow down
the location of the issue. Same as for ping, you need to use a source address that
is advertised via BGP in the default instance and reachable from the remote
device. Example:

supervi sor @t bri ck>LEAFO1: op> traceroute fd3d:3d:0:99::4 source-interface |0-0/0/0/1
traceroute to fd3d: 3d:0:99::4 30 hops nmax, 60 byte packets

1 fd3d: 3d: 100: a: : 2 13. 270 ns 4.973 ns 6.294 ns

2 fd3d: 3d: 0:99:: 4 18.825 s 17. 058 ns 17.764 ns

4.2. Subscriber Services

The term subscriber describes an access user or session from a higher level
decoupled from underlying protocols like PPPOE or IPoE. Subscribers in RBFS can
be managed locally or remote via RADIUS. Each subscriber is uniquely identified by
a 64bit number called subscriber-id.

4.2.1. Subscriber Sessions

A good starting point for troubleshooting subscriber services is to verify the status
of the subscriber sessions. If a session is fully operational, its state will be
ESTABLISHED like in the following example:

27

Troubleshooting

supervi sor @t bri ck>LEAFO1: op> show subscri ber

Subscri ber-1d

72339069014638600
72339069014638601
72339069014638602
72339069014638603

Interface VLAN Type State

ifp-0/0/1 1:1 PPPOE ESTABLI SHED
ifp-0/0/1 1.2 PPPOE ESTABLI SHED
i fp-0/0/1 1:3 PPPOE ESTABLI SHED
i fp-0/0/3 2000: 7 L2TP ESTABLI SHED

Alternative use show subscriber detail which shows further details like username,
Agent-Remote-Id (aka Line-ld) or Agent-Circuit-1d if screen width is large enough to
print all those information. The following table describes all possible subscriber

session states:

State

INIT
AUTHENTICATING
AUTH ACCEPTED
AUTH REJECTED
TUNNEL SETUP

ADDRESS
ALLOCATED

ADDRESS REJECTED

FULL
ACCOUNTING

ESTABLISHED

TERMINATING

Description

Initial subscriber state.

The subscriber is waiting for authentication response.
Authentication is accepted.

Authentication failed.

Subscriber is tunnelled via L2TPv2 waiting for L2TP session
setup completed.

IP addresses allocated.

IP addresses rejected (pool exhaust, duplicate or wrong
addresses).

Subscriber forwarding state established.

Subscriber accounting started sending RADIUS Accounting-
Request-Start.

The subscriber becomes ESTABLISHED after response to
RADIUS Accounting-Request-Start if RADIUS accounting is
enabled otherwise immediately after FULL.

The subscriber is terminating and remains in this state until
response to RADIUS Accounting-Request-Start if RADIUS
accounting is enabled

Further details per subscriber can be shown with the following commands.

supervi sor @t bri ck>LEAFO1: op> show subscri ber 72339069014638600

<Cr>
access-line

Subscri ber access line information

28

Troubleshooting

accounting Subscri ber accounting information
acl Subscriber ACL information (filter)
det ai | Det ai | ed subscriber information

gos Subscri ber QS information

If a subscriber has been torn down or is not able to setup, inspect the the
terminate history which indicates the teardown reason.

If a previously working subscriber session has been torn down, inspect the
termination history which tells the actual reason.

supervi sor @t bri ck>LEAFO1: op> show subscri ber history

Subscri ber-1d Ti mest anp Ter mi nat e Code

72339069014638594 Tue Nov 17 08:13:17 GMI +0000 2020 PPPoE LCP Ternm nate Request Received
72339069014638595 Tue Nov 17 08:13:17 GJr +0000 2020 PPPOE LCP Term nate Request Received
72339069014638596 Tue Nov 17 08:13:17 GJr +0000 2020 PPPOE LCP Term nate Request Received
72339069014638597 Tue Nov 17 08:13:17 GMI +0000 2020 PPPoE LCP Term nate Request Received
72339069014638598 Tue Nov 17 08:13:17 GVIr +0000 2020 PPPOE LCP Term nate Request Received
72339069014638599 Tue Nov 17 08:13:46 GMI' +0000 2020 L2TP CDN Request

72339069014638600 Tue Nov 17 08:39:01 GMI +0000 2020 PPPoOE Cl ear Session

This command shows also further information like interface, VLAN and MAC
address if screen is width enough.

Optionally you can view even more detailed information by inspecting the
following key BDS tables used for subscriber management:

* Subscriber table - main table including all subscribers with all states and
parameters:

supervi sor @t bri ck>LEAFO1: op> show dat astore subscriberd.1 table
| ocal . access. subscri ber

« Subscriber interface table:

supervi sor @t bri ck>LEAFO1: op> show dat astore subscriberd.1 table
gl obal . access. 1. subscri ber.ifl

* Subscriber termination history table:

supervi sor @t bri ck>LEAFO1: op> show datastore subscriberd.1 table
| ocal . access. subscri ber.term nate. history

29

Troubleshooting

4.2.2. RADIUS

Remote Authentication Dial-In User Service (RADIUS) is a networking protocol that
provides centralized Authentication, Authorization and Accounting (AAA)
management for all types of subscribers (PPPoE or IPOE). RADIUS servers can
perform as authentication and accounting servers or change of authorization (CoA)
clients. Authentication servers maintain authentication records for subscribers.

The subscriber daemon requests authentication in RADIUS access-request
messages before permitting subscribers access. Accounting servers handle
accounting records for subscribers. The subscriber daemon transmits RADIUS
accounting-start, interim and stop messages to the servers. Accounting is the
process of tracking subscriber activity and network resource usage in a subscriber
session. This includes the session time called time accounting and the number of
packets and bytes transmitted during the session called volume accounting. A
RADIUS server can behave as a change of authorization (CoA) client allowing
dynamic changes for subscriber sessions. The subscriber daemon supports both
RADIUS CoA messages and disconnect messages. CoA messages can modify the
characteristics of existing subscriber sessions without loss of service, disconnect
messages can terminate subscriber sessions.

RBFS supports multiple RADIUS servers for high availability and scaling which are
bundled using RADIUS profiles. The status of those profiles can be shown with the
following command.

supervi sor @t bri ck>LEAFO1: op> show radius profile
RADI US Profile: radi us-default
NAS- | dentifier: BNG
NAS- Por t - Type: Et hernet
Aut henti cati on:
Al gorithm ROUND- ROBI N
Server:
radi us-server-1
radi us-server-2
Account i ng:
State: UP
Stop on Reject: True
Stop on Failure: True
Backup: True
Al gorithm ROUND- ROBI N
Server:
radi us-server-1
radi us-server-2

The profile accounting state becomes immediately ACTIVE if at least one of the

30

Troubleshooting

referenced RADIUS accounting servers is enabled for accounting. Otherwise the
profile keeps DISABLED which may indicates a wrong configuration.

If RADIUS Accounting-On is enabled, the profile state becomes STARTING before
UP. It is not permitted to send any accounting request start, interim or stop related
to a profile in this state. It is also not permitted to send authentication requests if
accounting-on-wait is configured in addition. The state becomes UP if at least one
server in the accounting server list is in a state UP or higher.

A new profile added which references existing used RADIUS servers must not
trigger a RADIUS Accounting-On request if at least one of the referenced servers is
in a state of UP or higher.

The state of the RADIUS servers is shown with the following commands.

supervi sor @t bri ck>LEAFO1: op> show radi us server

RADI US Server Addr ess Aut henti cation State Accounting State
radi us-server-1 100.0.0.1 uP uP

radi us- server-2 100.0.0.3 ACTI VE ACTI VE

radi us- server-3 100.0.0. 4 ACTI VE ACTI VE

The following table explains the meaning of the different state where some of
those state are applicable for accounting only.

State Description

DISABLED RADIUS authentication (authentication_state) or accounting
(accounting-state) is disabled or server not referenced by profile.

ACTIVE Server referenced by RADIUS profile but no valid response received.

STARTING This state is valid for accounting (accounting-state) only during
accounting-on is sending (wait for accounting-on response).

STOPPING This state is valid for accounting (accounting-state) only during
accounting-off is sending (wait for accounting-off response).

FAILED This state is valid for accounting (accounting-state) only if accounting-
on/off timeout occurs.

UP Valid RADIUS response received

UNREACHA No response received/timeout but server is still usable.
BLE

DOWN Server is down but can be selected.

31

Troubleshooting

State Description

TESTING Send a request to test if server is back again. The server will not be
selected for another request in this state (use a single request to
check if server is back again).

DEAD Server is down and should not be selected.

Alternative use show radius server <radius-server> for further details and statistics
per RADIUS server. Those statics can be cleared with clear radius server-statistics
without any service impact.

4.2.3. PPPoOE Sessions

For PPPOE sessions the state should be ESTABLISHED if local terminated or
TUNNELLED for L2TPv2 tunnelled sessions.

supervi sor @t bri ck>LEAFO01:

Subscri ber-1d

72339069014638604
72339069014638601
72339069014638602
72339069014638603

Interface
ifp-0/0/1
ifp-0/0/1
ifp-0/0/1
ifp-0/0/3

op> show pppoe session

VLAN
101
1:2
1:3
2000: 7

MAC State

00: 04: Oe: 00: 00: 01 ESTABLI SHED
00: 04: Oe: 00: 00: 02 ESTABLI SHED
00: 04: Oe: 00: 00: 03 ESTABLI SHED
52:54:00:57: ¢c8: 29 TUNNELLED

Alternative use show pppoe session detail which shows further details like
username, Agent-Remote-Id (aka Line-ld) or Agent-Circuit-Id if screen width is large

enough to print all those information.

State

LINKING
AUTHENTICATING
NETWORKING
ESTABLISHED

TUNNELLED

TERMINATING
TERMINATED

Description

PPP LCP setup.

PPP authentication (PAP or CHAP).

PPP IPCP (IPv4) and IP6CP (IPv6) setup.

The PPPoE session becomes established if at least one NCP
(IPCP or IP6CP) is established (state OPEN).

This state indicates that a PPPoE session is tunnelled via

L2TPv2.

PPP session teardown.

PPPoOE session terminated.

If PPPOE session remain in state TERMINATED, the subscriber state should be

32

Troubleshooting

checked. Typically this happens if RADIUS Accounting-Request-Stop is still pending.

Further details per PPPOE session can be shown with the following commands.

supervi sor @t bri ck>LEAFO1: op> show pppoe sessi on 72339069014638601

<cr>
det ai | Det ai | ed session information
statistics Protocol statistics

The detail command shows the states of the session and all sub-protocols with
extensive information and negotiated parameters.

Session statistics are available global and per session.

supervi sor @t bri ck>LEAFO1: op> show pppoe session statistics
supervi sor @t bri ck>LEAFO1: op> show pppoe sessi on 72339069014638601 statistics

The PPPoE discovery statistics are helpful if session setup fails in initial PPPoE
tunnel setup before actual PPP negotiation is starting.

supervi sor @t bri ck>LEAFO1: op> show pppoe di scovery packets

Packet Recei ved Sent
PADI 17 0
PADO 0 17
PADR 17 0
PADS 0 17
PADT 1 13

supervi sor @t bri ck>LEAFO1: op> show pppoe di scovery errors
PADI Drop No Config 0

PADI Drop Session Protection
PADI Drop Session Limt

PADI Drop Dup Session

PADI Drop | nterface Down
PADR Drop No Config

PADR Drop Wong MAC

PADR Drop | nterface Down
PADR Drop Session Limt

PADR Drop Session Protection
PADR Drop Bad Cooki e

PADR Drop Bad Session

PADR Drop Dup Session

PADR Drop No mapping Id

PADT Drop No Session

PADT Drop Wong MAC

PADX | nterface Get Failure

(el eleolNelNolNolNeolNolNolNolNolNolNolNolNolNo]

If PPPOE session protection is enabled in access configuration profile, short lived or
failed sessions will be logged in the PPPoOE session protection table

33

Troubleshooting

(local.pppoe.session.protection).

Every session not established for at least 60 seconds per default is considered as
failed or short lived session. This will block new sessions on this IFP and VLANSs for
one second per default which increase exponential with any further failed session
until the max time of per default 300 seconds is reached. The interval is reset after
900 seconds without failed sessions.

The PPPoE session protection table include also last subscriber-id and terminate
code which indicates the reason for session failures.

supervi sor @t bri ck>LEAFO1: op> show pppoe di scovery protection

Interface VLAN Status Attenpts Last Terni nate Code

ifp-0/0/1 1.1 (014 1 PPPoE LCP Term nate Request Received
ifp-0/0/1 1.2 (0 ¢ 1 PPPoE LCP Termi nate Request Received
ifp-0/0/1 1:3 (04 1 PPPoE LCP Term nate Request Received

If status OK indicates that new session are accepted where BLOCKED means that
sessions will be rejected.

4.2.4. L2TP Sessions

For L2TPv2 tunnelled PPPOE sessions the global unique subscriber-id can be used
to get information about the L2TP session.

supervi sor @t bri ck>LEAFO1: op> show | 2t p subscri ber 72339069014638621
Subscri ber-1d: 72339069014638621

St at e: ESTABLI SHED

Local TID: 45880

Local SID: 39503

Peer TID: 1

Peer SID: 1

Call Serial Nunmber: 10

TX Speed: 10007000 bps

RX Speed: 1007000 bps

CSUN: di sabl ed

The following command gives a good overview over the corresponding tunnels.

supervi sor @t bri ck>LEAFO1: op> show | 2t p tunnel sessions

Rol e Local TID Peer TID State Pref erence Sessions Established Peer Nanme
LAC 2022 1 ESTABLI SHED 10000 1 1 LNS3
LAC 3274 1 ESTABLI SHED 10000 1 1 LNS8
LAC 14690 1 ESTABLI SHED 10000 1 1 LNS6
LAC 29489 1 ESTABLI SHED 10000 1 1 LNS9
LAC 33323 1 ESTABLI SHED 10000 1 1 LN
LAC 35657 1 ESTABLI SHED 10000 1 1 LNS10

34

Troubleshooting

LAC 37975 1 ESTABLI SHED 10000 1 1 LNS1
LAC 45880 1 ESTABLI SHED 10000 1 1 LNS7
LAC 46559 1 ESTABLI SHED 10000 1 1 LNS2
LAC 58154 1 ESTABLI SHED 10000 1 1 LNS5

Detailed information per tunnel are available via show [2tp tunnel <TID> detail.

L2TP tunnel statistics are available global and per tunnel.

supervi sor @t bri ck>LEAFO1: op> show | 2tp tunnel statistics
supervi sor @t bri ck>LEAFO1: op> show | 2tp tunnel 37975 statistics

4.2.5. Service-Layer Connectivity

A different type of issues can occur if a subscriber has successfully connected to a
leaf switch, but does not have connectivity to his services, for example connecting
to the Internet. The actual user traffic is carried in a VPN across the RBFS fabric.
First, verify the VPN routing table on both the spine and the leaf switches.
Depending on your design, there will be specific routes and/or a default route only:

supervi sor @t bri ck>LEAFO1l: op> show route ipv4 unicast instance services

I nstance: services, AFl: ipv4, SAFl: unicast

Pref i x/ Label Sour ce Pr ef Next Hop Interface

192.168. 0. 3/ 32 di rect 0 192.168.0. 3 | 0-0/0/0/2

192. 168. 0. 4/ 32 bgp 20 fd3d: 3d: 0: 99:: 4 mem f-0/1/1/1
<...>

If routes are missing already on the spine switch, there might be a routing issue
between the spine and the upstream core routers or route reflectors. Further
troubleshooting steps will depend on how the fabric is connected to the upstream
network in your deployment. If all expected routes exists on the spine switch, but
are missing on the leaf switch, verify the VPN route exchange between them.
Example for verifying VPN routes advertised by the spine switch:

supervi sor @t bri ck>LEAFO1: op> show bgp rib-out ipv4 vpn-unicast peer |eafl

I nstance: default, AFlI: ipv4, SAFl: vpn-unicast
Peer: leafl, Sent routes: 2
Prefix MED Local Pref Oigin Next Hop AS Path
192.168. 0. 3/ 32 0 - I nconpl ete fd3d: 3d: 0: 99:: 3 4200000100,
4200000201
192. 168. 0. 4/ 32 1 - I nconpl ete fd3d: 3d: 0:99::4 4200000100,
4200000202
<...>

Example for verifying VPN routes received by the leaf switch:

35

Troubleshooting

supervi sor @t bri ck>LEAFO1: op> show bgp rib-in ipv4 vpn-unicast peer spinel

Instance: default, AFI: ipv4, SAFl: vpn-unicast
Peer: spinel, Received routes: 1
Prefix Path I D Next Hop MED Local Pref AS Path
192.168. 0. 4/ 32 0 fd3d: 3d: 0:99:: 4 1 - 4200000100,

4200000202

If you have a publicly routed loopback address in the services VPN, you can verify
the connectivity to any well-known destination address using the RBFS Ping tool
within the VPN instance:

supervi sor @t bri ck>LEAFO1: op> ping 8.8.8.8 instance services source-interface 10-0/0/1/0
68 bytes from8.8.8.8: icnp_seq=1 ttl=63 tinme=21.6622 s
< ..>

Statistics: 5 sent, 5 received, 0% packet |oss

If there is no connectivity to the IP address of your service, verify connectivity
across the fabric within the instance by sending a ping between two leaf switches.
This will indicate if the connectivity problem lies in the spine/leaf fabric or in the
upstream network:

supervi sor @t bri ck>LEAFO1: op> ping 192.168.21.5 instance services source-interface |0-0/0/1/0
68 bytes from 192.168.21.5: icnp_seg=1 ttl=63 tinme=1.5511 ns
<...>

Statistics: 5 sent, 5 received, 0% packet |oss

4.3. Host Path Capturing

You can use the RBFS built-in capture tool to verify and troubleshoot fabric as well
as services protocol operation. It captures and displays all host-path traffic, that is
control-plane packets sent to the CPU. It does not apply to transit traffic. This
section explains the options available of the capturing tool to troubleshoot host
path issues.

4.3.1. Physical Interface

You can capture all host path packets on a physical interface, including all sub-
interfaces, by specifying the physical interface (IFP) name with the capture
command.

capture interface <physical-interface-name> direction <dir>

36

Troubleshooting

Example

capture interface ifp-0/0/52 direction both

R°1 To access the Operational State API that corresponds to this CLI, click here.

4.3.2. Logical Interface

If you specify a logical interface (IFL) name with the capture command, the traffic
on that sub-interface will be captured only. This allows to filter for example on a
specific VLAN.

capture interface <logical-interface-name> direction <dir>

Example

capture interface ifl-0/0/52/1 direction both

4.3.3. Shared Memory Interface

There is no BDS packet table in fibd. Instead there is a pseudo network interface of
the form shm-0/0/<trap-id>, where the trap ID identifies the protocol (BGP, ISIS,
PPPoE, L2TP, RADIUS). You can use the VPP internal command show rth-shm to
find the mapping of protocol to trap ID. This command captures the packet
exchanges between fibd and other protocol daemons.

capture interface <shm-interface-name> direction <dir>

Example

capture interface shm0/0/1 direction both

4.3.4. ACL-based Packet Capturing

You can use an ACL to more granularly define the traffic to be captured.

capture acl <acl-name> direction <direction> interface <interface> <options>

37

https://documents.rtbrick.com/techdocs/current/api/rbfs-apis.html?urls.primaryName=Operational+State+API+Reference#/Interfaces/startPhysicalInterfaceTrafficCapture

Troubleshooting

Option
<acl-name>

<direction>

<interface>

file <filename> start

Description
ACL name.

Direction of the packet. The supported values are: in,
out, or both.

Specifies the interface that is used to capture packets
onto console. For ACL-based packet capturing, the
interface is mandatory.

You can use this option to save the packets in the
PCAP file and later use a tool like Wireshark to analyse
the captured traffic

raw Raw packet capture
Example
{
"rtbrick-config:acl":
"13ve": {
"rule": [
{
"rul e-nanme": "fromto_spinel",
"ordinal":
{
"ordinal -val ue": 10,
"mat ch":
"direction": "ingress",
"source-ipv6-prefix": "fd3d:3d: 100: a:: 1/ 128"
e
"action":
"capture": "true"
}
s
{
"ordi nal -val ue": 20,
"mat ch":
"destination-ipv6-prefix": "fd3d:3d:100: a::1/128",
"direction": "ingress"
},
"action":
"capture": "true"
}
}
]
}

supervi sor @t bri ck>LEAFO1:

hostif-0/0/3

op> capture acl fromto_spinel direction both interface

38

Troubleshooting

Success : ifp capture started

2022- 06- 09TO7: 45: 48. 358898+0000 7a: 2f: 78: c0: 00: 03 > 7a: 3f: 3e: c0: 00: 03, ethertype
| Pv6 (0x86dd), length 122: (hlim 255, next-header | CVMPv6 (58) payl oad | ength: 68)
fd3d: 3d: 100: a:: 1 > fd3d: 3d: 100:a::2: [icnp6 sum ok] | CWP6, echo request, seq 1
2022- 06- 09TO7: 45: 48. 359027+0000 7a: 3f: 3e:c0:00: 03 > 7a: 2f: 78: c0: 00: 03, ethertype
| Pv6 (0x86dd), length 122: (hlim 64, next-header |CWv6 (58) payl oad | ength: 68)
fd3d: 3d: 100: a:: 2 > fd3d: 3d: 100: a::1: [icnp6 sum ok] | CWMP6, echo reply, seq 1

<...>

4.3.5. Filtering by Protocol

In most cases, while using the logical interface and physical interface, you may
want to select a packet belonging to a specific protocol. In that case you can use
the protocol filter option.

capture interface <interface-name> direction <direction> protocol <protocol-
name>

Example

supervi sor @t bri ck>LEAFO1: op> capture interface ifp-0/0/52 direction both
pr ot ocol bgp

supervi sor @t bri ck>LEAFO1: op> capture interface ifl-0/0/52/1 direction both
pr ot ocol bgp

4.3.6. Raw Format

The raw option of the capture tool allows to decode as well as dump the packet in
raw format. The raw option is useful if you want to examine packets in hex to
check for malformed packets, etc.

capture interface <interface-name> direction <direction> raw

Example

supervi sor @t bri ck>LEAFO1: op> capture interface ifl-0/0/52/1 direction both raw

supervi sor @t bri ck>LEAFO1: op> capture interface ifp-0/0/52 direction both raw

39

Troubleshooting

4.3.7. PCAP File

While debugging a setup with real traffic, analysing all packets on a terminal might
be cumbersome. You can use the pcap option to save the packets in the PCAP file
and later use a tool like Wireshark to analyse the captured traffic.

To start capturing the traffic in a file, enter the following command:

capture interface <interface-name> direction <direction> file <file_name.pcap>
start

To stop capturing the traffic in a file, enter the following command:

capture interface <interface-name> direction <direction> file <file_name.pcap>
stop

Example

supervi sor @t bri ck>LEAFO1: op> capture interface ifp-0/0/52 direction both file
test.pcap start

supervi sor @t bri ck>LEAFO1: op> capture interface ifp-0/0/52 direction both file
test.pcap stop

40

Troubleshooting

5. Logging

5.1. Log Files

5.1.1. Log Files on the Host OS

On the host OS, i.e. ONL in case of hardware switches, navigate to the /var/log/
folder and list the available log files:

supervi sor @pi nel:/var/log$ Is -I

total 3064

<...>

-rwr--r-- 1 root root 2242 Nov 4 11:13 rtbrick-api gwd. | og
-rwr--r-- 1 root root 458617 Nov 4 14:27 rtbrick-ctrld.|og
-rwr--r-- 1 root root 831 Nov 4 11:13 rthbrick-hostconfd. | og
-rwr--r-- 1 root root 73509 Nov 4 14:27 rtbrick-hostnetconfd.|og
-rwr--r-- 1 root root 668 Nov 4 11:13 rthbrick-1xcd. | og
STWr----- 1 root adm 286356 Nov 4 14:27 syslog

<...>

Inspect the log file of interest using one of the standard Linux tools like cat, more,
or less. For example:

supervi sor @pi nel:/var/log$ nore rtbrick-ctrld.|og

5.1.2. Log Files in the LXC

In the RBFS container, navigate to the /var/log/ folder and list the available log files.
There will be one active log file per daemon or service, and up to ten compressed
(.82) log files created during log file rotation:

supervi sor @pi nel:/var/log$ Is -1

total 2376

<...>

-rwr--r-- 1 root root 48268 Nov 4 15:51 rthbrick-al ertnmanager-service-out.| og
-rwr--r-- 1 root r oot 3451 Cct 30 17:51 rthbrick-al ert manager-service-out.|og. 1.9z
-rwr--r-- 1 root r oot 2509 Cct 25 00: 02 rthbrick-al ert manager-service-out. | og. 2.9z
-rwr--r-- 1 root r oot 0 Nov 1 01:17 rthbrick-bgp. appd. 1-service-out. |l og
-rwr--r-- 1 root r oot 3333 Cct 30 17:51 rthbrick-bgp. appd. 1-service-out.log. 1.9z
-rwr--r-- 1 root r oot 3192 Cct 19 13:17 rthbrick-bgp. appd. 1-servi ce-out. | og. 2. gz
<...>

The log files for brick daemons include only basic logs referring to
0 the operation of the daemon itself. The actual applications like

41

Troubleshooting

routing or service protocols use log tables described in the BDS
Logging section. In contrast, Prometheus and Alertmanager are no
BDs and use log files as the primary means of logging. Inspect the
log file of interest using one of the standard Linux tools like cat,
more, or less. For example:

super vi sor @pi nel:/var/l og$ nore rtbrick-pronmetheus-service-out.log

5.2. BDS Logging

5.2.1. Enabling BDS Logging

BDS logging is enabled per BD, per module, and per group by configuration. By
default, BDS logging is enabled for all daemons and all modules with level Error.
Verify the log status of the module and optionally per daemon. The following
output reflects a default configuration:

super Vi sor @pi ne2: op> show | og status nodul e bgp bd bgp.iod.1
Modul e | og stat us:
bgp:
bgp.i od. 1:
Level : error, Plugin: None
Log group status:

G oup Level Pl ugi n Rate limt
config error None 10

gener al error None 10
generic error None 10

<...>

For troubleshooting an application, enable a more detailed log level. First example,
enable and verify logging with level Info for the bgp.iod and all groups of the BGP
module:

supervi sor @pi ne2: cfg> set log bd bgp.iod.1l nodule bgp |evel info
supervi sor @pi ne2: cfg> commit

supervi sor @pi ne2: op> show | og bgp.iod. 1l status

<...>

super Vi sor @pi ne2: op> show | og status nodul e bgp bd bgp.iod.1
Modul e | og stat us:

bgp:
bgp.i od. 1:
Level : info, Plugin: None
Log group status:
G oup Level Pl ugi n Rate limt
config info None 10
gener al info None 10

42

Troubleshooting

generic info None 10
<...>

Second example, enable and verify logging with level Debug specifically for the PPP
and PPPoE group of logs:

supervi sor @eaf 2: cfg> set |og bd pppoed.1 nodul e pppoed group ppp | evel debug
supervi sor @eaf 2: cfg> set |og bd pppoed.1l nodul e pppoed group pppoe | evel debug
supervi sor @eaf 2: cfg> conmit

supervi sor @eaf 2: cfg>

supervi sor @eaf 2: op> show | og status nodul e pppoe
Modul e | og stat us:
pppoe:
pppoed. 1:
Level : error, Plugin: None
Log group status:

G oup Level Pl ugi n Rate limt
config error None 10
dhcpv6 error None 10
gener al error None 10
generic error None 10
ppp debug None 10
pppoe debug None 10
subscri ber error None 10

For a complete and detailed description of the logging configuration, please refer
to the RBFS Logging Guide.

5.2.2. Inspecting Log Tables

BDS log tables are created on demand by the daemons if logging is enabled and
there is an event to log. Use the 'show log table' command to look into the log
tables:

supervi sor @eaf 2: op> show | og tabl e bgp. | ogs

[Info] <2021-07-16T06:57: 14. 434358+0000> BGP peer fe80::7825: 1dff:fe60: 202, source

fe80::7828: 3bff:fe60: 101, hostnane spinel, instance default reset, reason Notification received

[Info] <2021-07-16T06:57: 14. 435583+0000> BGP FSM change, peer fe80::7825: 1dff:fe60: 202, source
fe80::7828: 3bff: fe60: 101, hostnane -, instance default changed state from Established to Idle, reason Cease,
Sub- Code: Admin reset

[Info] <2021-07-16T06:58: 01.033211+0000> Created tabl e(defaul t.bgp.rib-

in.ipv6.unicast.fe80::7825: 1df f: fe60: 202. f e80: : 7828: 3bf f: f e60: 101)

[Info] <2021-07-16T06:58: 01. 033290+0000> Created tabl e(defaul t.bgp.rib-in.ipvé.| abel ed-

uni cast . f e80: : 7825: 1df f : f e60: 202. f e80: : 7828: 3bf f: f €60: 101)

[I nfo] <2021-07-16T06: 58: 01. 033347+0000> Created tabl e(defaul t.bgp.rib-in.ipv4.vpn-

uni cast . fe80: : 7825: 1df f: f e60: 202. f e80: : 7828: 3bf f: f e60: 101)

[I nfo] <2021-07-16T06: 58: 01. 033401+0000> Created tabl e(defaul t. bgp.rib-in.ipvé.vpn-

uni cast . fe80: : 7825: 1df f: f e60: 202. f e80: : 7828: 3bf f: f e60: 101)

[I nfo] <2021-07-16T06: 58: 01. 344927+0000> BGP FSM change, peer fe80::7825: 1dff:fe60: 202, source
fe80::7828: 3bff: fe60: 101, hostname spinel, instance default changed state fromldle to Established, reason
None

[Info] <2021-07-16T06: 58: 03. 471937+0000> BGP nessage received from peer fe80::7825: 1dff:fe60: 202,
source fe80::7828:3bff:fe60: 101, hostnane spinel, instance default decode failed. Message type 2

<...>

43

Troubleshooting

The 'show log table' command supports various filter options. You can filter on the
level, module, or a regular expression. Example:

super vi sor @pi ne2: op> show |l og table bgp.logs filter |evel error
super vi sor @pi ne2: op>

For a complete and detailed description of the filter options, please refer to the
RBFS Logging Guide.

44

Troubleshooting

6. Reporting Issues to RtBrick

Accessing RtBrick support is done via the RtBrick webpage, in the support section:
https://www.rtbrick.com/fix-a-problem/contact-our-experts-now. To be able to
open a support case, you need an active business contract, and a support account
at RtBrick.

6.1. Support Portal login page

%, rtorick "

£ Support Center Home [.d Open a New Ticket |z Check Ticket Status

Open a New Ticket

Welcome to the Support Center
In order to streamline support requests and better serve you, we utilize a support ticket

system. Every support request is assigned a unique tickst number which you can use
to track the progress and respanses onling. For your reference we provide complete

archives and history of all your support requests. A valid email address is required fo
submit a ticket.

Figure 1. Support Portal Login Page

On the https://www.rtbrick.com/fix-a-problem/contact-our-experts-now page, click
the customer support portal link; you will be redirected to the Customer Portal. In
the support page that appears, if you don’t have any cases already opened, you
will be presented with a form to open a case; on the righthand side you will have
quick links to documentation and products. Note that fields marked with an
asterisk are mandatory. After filling in all the information, press the submit button
on the bottom of the page.

6.2. Opening a case

45

https://www.rtbrick.com/fix-a-problem/contact-our-experts-now
https://www.rtbrick.com/fix-a-problem/contact-our-experts-now

Troubleshooting

’ . e = Profile | Tickets (0) - Sign Out
.4:. rtorick “

4+ Support Center Home [§ Knowledgebase [} Open a New Ticket [-] Tickets (11)

Open a New Ticket

Please fill in the form below to open a new ticket.

Email:
Client:

Help Topic

[— Select a Help Topic —

[Create Ticket || Reset || Cancel |

Figure 2. Opening a case in the support portal

To help solving the case in a timely manner, basic information must be given in
order to pinpoint the issue:

« If the issue was encountered on a virtual installation or on a physical box
« The RBFS image role (spine/access leaf), the version, and the patch version

« Any logs and/or comments: for logs you can use the "Add attachment" link in
the support page, and comments can be posted after the case is submitted.

6.3. Debugger Information Utility Program

In RBFS, every daemon maintains a set of tables containing data specific to its
functions. These daemon-specific tables help in a deeper analysis of issues,
allowing for targeted debugging based on the specific functions and
responsibilities of each daemon.

RBFS implements a debugger information utility program. This utility allows you to
retrieve table information from all or a few specific modules. This information also
includes log files, diagnostic messages, CPU and memory states, and current and
previous configurations. This utility program can be run whenever an issue is
encountered with RBFS and needs to be reported to customer support.

46

Troubleshooting

The utility program collects data and converts this into a JSON file format. Each
collected file is named after the respective table name or data it contains and is
stored in a directory named with the corresponding timestamp. This directory is
compressed into a zip file and saved in the "/var/crash/debug_info" directory.

You can then attach and send this zipped file to the RtBrick support team. This
information is valuable for troubleshooting many types of network issues, as it
allows the support team to analyze the router’s state and configurations without
directly accessing the router.

When users, who do not have the necessary permissions, attempt to access data
from a table by executing the command, they will not be able to view the retrieved
data.

6.3.1. How to Retrieve Data Using the Utility Program

To retrieve data, you must run the collect debug-information command in the
debug mode to retrieve the data.

The following is the command syntax:

collect debug-information <option>

Attribute Description
all This option retrieves data from all daemons.
<module-name> This option allows you to specify the daemon/module

name so that the utility retrieves data only for that
specific module/daemon.

To collect debug information for all modules, use the following command:
collect debug-information all

0 After executing the command, the data collection process takes a
few seconds or minutes to complete.

The following example command execution shows the date and time in sequential
order as each daemon’s data is fetched. It also shows the total time taken to
complete the collection process at the end

47

Troubleshooting

ion all inte

atform-dependent

e
=
e

mtu

F

ribd

anual/

collect debug-information all

Figure 3. Debug Information Collection Example

6.3.2. Periodic Data Collection

This utility program can also help in collecting system states and other information
at scheduled intervals. This periodically collected information helps in
understanding the system state before an issue occurs, which is useful in many
scenarios.

The utility can be configured to automatically run at predefined intervals to collect
data. After each run, it saves reports that can be used for further analysis and
troubleshooting. You can define the intervals for periodic data collection to suit
your needs.

The system employs Cron Job functionality to collect this periodic debugging
information. A Cron Job is a scheduled task that runs automatically at specified
intervals.

You can configure the Cron Job functionality to enable periodic data collection.

Setting Up Cron Job

You can specify the data collection interval, limit the number of files, and initiate
the Cron job function.

Specify the Interval:

Define how frequently the system should collect debug information. The interval is
specified in hours. The default interval for running the utility is 12 hours. Use the

48

Troubleshooting

command:
set debug-information collector interval <interval>
Specify the File Limit:

Specify the maximum number of files to be stored for such runs. Once the limit is
reached, the system will start overwriting the oldest files and this process
continues. The default maximum number of files is 10. Use the command:

set debug-information collector max-files <max_files>
Stopping the Cron Job Function

You can use the following delete form of the command to halt the ongoing Cron
Job process.

delete debug-information collector

49

Troubleshooting

Registered Address Support Sales

40268, Dolerita Avenue

Fremont CA 94539

+1-650-351-2251 +91 80 4850 5445
http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2026 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick's Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

50

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

	Technical Documentation: Troubleshooting
	Table of Contents
	1. Troubleshooting Guide Overview
	1.1. Scope
	1.2. Troubleshooting Approach
	1.3. Supported Platforms

	2. System Health
	2.1. Container
	2.1.1. Checking the Container Status
	2.1.2. Recovering from a Container Failure

	2.2. Brick Daemons
	2.2.1. Checking the BD’s Status
	2.2.2. Core Dump
	2.2.3. Recovering from a BD Failure

	2.3. Running Configuration
	2.3.1. Verifying the Configuration
	2.3.2. Restoring a Configuration

	2.4. License
	2.4.1. Verifying a License
	2.4.2. Restoring or Updating a License

	2.5. Control Daemon
	2.6. System Utilization
	2.6.1. Memory and CPU Verification
	2.6.2. Disk Space

	3. Physical Layer
	3.1. Link Failures
	3.2. Hardware Failures

	4. Application Layer
	4.1. Fabric Operation
	4.1.1. Fabric Protocols
	4.1.2. Transport-layer Routing
	4.1.3. Fabric Connectivity

	4.2. Subscriber Services
	4.2.1. Subscriber Sessions
	4.2.2. RADIUS
	4.2.3. PPPoE Sessions
	4.2.4. L2TP Sessions
	4.2.5. Service-Layer Connectivity

	4.3. Host Path Capturing
	4.3.1. Physical Interface
	4.3.2. Logical Interface
	4.3.3. Shared Memory Interface
	4.3.4. ACL-based Packet Capturing
	4.3.5. Filtering by Protocol
	4.3.6. Raw Format
	4.3.7. PCAP File

	5. Logging
	5.1. Log Files
	5.1.1. Log Files on the Host OS
	5.1.2. Log Files in the LXC

	5.2. BDS Logging
	5.2.1. Enabling BDS Logging
	5.2.2. Inspecting Log Tables

	6. Reporting Issues to RtBrick
	6.1. Support Portal login page
	6.2. Opening a case
	6.3. Debugger Information Utility Program
	6.3.1. How to Retrieve Data Using the Utility Program
	6.3.2. Periodic Data Collection

