
API References
Version 25.2.1.6, 12 January 2026

Table of Contents
1. RBFS API User Guide . 1

1.1. RBFS REST APIs . 1

1.1.1. Introduction to RBFS REST APIs . 1

1.1.2. Understanding RBFS APIs . 1

1.2. Controller Daemon . 3

1.2.1. CtrlD Overview . 4

1.2.2. CtrlD Parameters . 5

1.2.3. Container Management . 6

1.2.4. Images Management . 7

1.2.5. Container and Element Management. 9

1.2.6. CtrlD API . 10

1.2.7. Jobs and Callbacks . 11

1.2.8. Pub-Sub Model . 11

1.2.9. CtrlD Logs . 12

1.3. Functions and Use cases of RBFS REST APIs . 12

1.3.1. CtrlD API . 12

1.3.2. RESTCONF API. 13

1.3.3. Operational State API . 13

1.3.4. Guidelines and Limitations. 14

1.4. Configure API Gateway and CtrlD Components . 14

1.4.1. Configure API Gateway Components . 14

1.4.2. Control Daemon (CtrlD) . 17

1.5. Events . 23

1.5.1. Alerts . 23

1.5.2. Business Events . 23

1.6. Appendix: Use case Scenario and Examples for RBFS REST APIs. 29

1.6.1. CtrlD API: Use Cases and Examples . 29

1.6.2. RESTCONF API: Use Cases and Examples. 31

1.6.3. Operational State API: Use Cases and Examples 37

1.6.4. Prometheus: Use Cases and Examples . 39

1.7. Related Documentation . 40

2. RBFS APIs . 41

1. RBFS API User Guide

1.1. RBFS REST APIs

This document contains all the information about RBFS REST API services, their
purposes and how to use these APIs. This documentation goes hand-in-hand with
the RBFS OpenAPI document which provides information about all RBFS REST API
endpoints. It is recommended to refer to this document in conjunction with the
RBFS OpenAPI document.

1.1.1. Introduction to RBFS REST APIs

RBFS REST APIs allow customers and partners to programmatically access
information from the RBFS software components. RBFS REST APIs enable users to
manage and automate many of their tasks by accessing and consuming the RBFS
data simply and securely.

RBFS REST API architecture supports containerized deployments with a centralized
configuration and management. It also enables the configuration and
management of distinct daemons and services.

RBFS APIs adhere to the Representational State Transfer (REST) principles and
allow consumers to securely connect to the RBFS device, obtain information (read)
and run actions or operations to apply changes. RBFS REST APIs use JavaScript
Object Notation (JSON) for the exchange of information. The OpenAPI Specification
format, which is a broadly accepted industry standard for describing REST APIs, is
used to describe, consume, and visualize RBFS REST APIs.

1.1.2. Understanding RBFS APIs

RBFS, a disaggregated Broadband Network Gateway, provides many APIs to make
all communications possible with various RBFS software components, the host
operating system (ONL), and the hardware platform. RBFS consists of several
independent microservices including the API Gateway daemon (ApiGwD) and
Control daemon (CtrlD). Both of these microservices, known as daemons, play
crucial roles in managing RBFS instances.

API gateway functions only if management plane security is enabled. All API
requests from external clients are routed to the API Gateway. After successful

API References

1

authentication by the API Gateway, these requests are forwarded to the Control
daemon. CtrlD, which is aware of the state and port information of all daemons
that reside in the RBFS container, can forward requests to the respective daemons.


If security is disabled, API Gateway does not function and, then
CtrlD becomes the first entry point for external requests.

Figure 1. RBFS REST APIs

The illustration presents how the RBFS REST APIs communication happens with
various underlying software components. RBFS microservices, which perform
various functions, are containerized in an open Linux container. RBFS APIs are
generally categorized into Public Management APIs and Internal APIs. Public
Management APIs include CtrlD API, RESTCONF API, and Operational state API.
These APIs are used for managing and automating many of the network
administration tasks.


The use of internal APIs such Brick Daemon APIs and BDS APIs are
not supported.

The illustration also presents the API Gateway daemon (ApiGwD) and Control
daemon (CtrlD), which are deployed on the host operating system (open network
Linux) along with the RBFS container. The API Gateway acts as an entry point that
provides a secure channel for all REST APIs by authenticating all requests. After
successful authentication by the API Gateway, CtrlD (Control Daemon) passes all
the requests to the respective daemons (that reside in the RBFS container) which
are responsible for performing certain tasks.

API References

2

RBFS APIs

CtrlD API: CtrlD runs on the host OS (ONL) and acts as a proxy to the other APIs
including high-level APIs for the RBFS configurations. The CtrlD API, implemented
by the CtrlD, performs various tasks such as starting the container and rebooting
the device. In case of a software upgrade, this API is used to trigger the upgrade.

API Gateway: You can deploy the API Gateway Daemon (ApiGwD) on the host OS
(that is ONL) to secure the RBFS management plane. The API Gateway
authenticates all API requests using JSON web tokens. The API Gateway Daemon
acts as the TLS endpoint for the hardware platform and it converts external access
token into an internal RtBrick token /SEC/. Finally, it forwards the requests to the
CtrlD.

The API Gateway also enforces an API throttler that provides a mechanism called
API throttle quotas to protect the RBFS system resources from being exhausted
with too many requests by a single client system that uses the RBFS APIs very
extensively.

Operational State APIs: The Operational State API, provided by the Operational
State Daemon (opsd), allows accessing system states such as routing protocol
states, interface states, subscriber states and resource utilization. The Operational
State Daemon takes care of examining the operational state of a switch and runs
actions to diagnose and troubleshoot the problems. The operational state is
ephemeral and state data is lost when the switch reboots.

RESTCONF APIs: With RESTCONF, you can manage all the configurations in RBFS.

Prometheus APIs: Prometheus APIs help to retrieve metrics from various RBFS
components for visibility.


RFC and draft compliance mentioned in the document are partial
except as specified.

1.2. Controller Daemon

This chapter provides information about the Controller Daemon (CtrlD) which is a
major software component in the RBFS ecosystem. It serves as a proxy to various
APIs, including high-level APIs for RBFS configurations.

API References

3

1.2.1. CtrlD Overview

CtrlD operates on the host OS (ONL) and it is the single entry point to the router
running the RBFS software. CtrlD controls and manages most of the tasks and
functions in an RBFS ecosystem. You can run multiple instances of the CtrlD on an
RBFS device.

CtrlD is deployed on ONL (Open Network Linux) and acts as an intermediary
between the RBFS container in the ONL and external systems. The following
illustration presents a high-level overview of CtrlD.

Figure 2. CtrlD Overview

The CtrlD API, implemented by CtrlD, performs multiple tasks such as initiating the
container and rebooting the device. In the event of a software upgrade, CtrlD API is
used to trigger the upgrade process.

CtrlD also manages the container and controls the interaction between the
different external systems such as Graylog. CtrlD uses REST APIs to control and
manage the router. CtrlD is also responsible for gathering data from the router
and forwarding this information to other systems.

CtrlD plays different roles in an RBFS ecosystem. It is the gateway for all other

API References

4

components interacting within or outside of an RBFS device. CtrlD acts as:

• Controller for router device running RBFS.

• Controller for elements in the device, such as LXC containers.

• Gateway to RBFS images and packages.

1.2.2. CtrlD Parameters

In a production environment, the CtrlD binary starts with default parameters as
the rtbrick-ctrld service. To see these default parameters, use the ctrld -h
command.

$ ctrld -h
Usage of ctrld:
 -addr string
 HTTP network address (default ":19091")
 -config string
 Configuration for the ctrld (default "/etc/rtbrick/ctrld/config.json")
 -lxccache string lxc Image Cache folder (default "/var/cache/rtbrick")
 -servefromfs
 Serves from filesystem, is only used for development
 -version
 Returns the software version

CtrlD Version

The command ctrld -version displays the installed version of the daemon. The
version should be tagged correctly in the repository.

The CtrlD configuration can be located in the JSON file:
/etc/rtbrick/ctrld/config.json. Use the cat command to display the file content.

Example:

$ cat /etc/rtbrick/ctrld/config.json
{
 "rbms_enable": true,
 "rbms_host": "http://198.51.100.77",
 "rbms_authorization_header": "Basic YWRtaW46YWRtaW4=",
"rbms_heartbeat_interval": 600
}

API References

5

1.2.3. Container Management

CtrlD serves as the manager for containers. However, the RBMS, an external RBFS
management system, is not aware of these containers, necessitating a systematic
mapping. Understanding the correlation between RBMS, CtrlD, and Linux
Containers (LXC) is important.

RBMS contains various elements, each uniquely identified by a name, representing
a running RBFS instance. You can upgrade or downgrade Elements.

Each RBMS Element includes services. These services not only characterize the
Element’s functionalities but also encapsulate the services running within it.

The foundational unit in the model is the 'element container', whether a single
element exists on an ONL or not. The following figure illustrates the general
structure of daemons and containers within the RBFS service model.

Figure 3. Service Model for RBFS

In the event of an Element undergoing upgrade or downgrade, the system
automatically preserves the previous version within an outdated container. It
enables the recovery of the outdated container, if the upgrade or downgrade fails.
By maintaining the backup, it minimizes potential disruptions and safeguards
against data loss.

API References

6

Both 'element' and 'container' are different in RBFS. In RBFS, a container always
refers to an lxc-container. However, in a white box environment, a container is
denoted simply as rtbrick.

You can configure the element-name and the pod-name of a container in the lxc-
container root directory at: /var/lib/lxc/rtbrick/element.confg.

This method offers several benefits:

Updating Container

• Upgrading or downgrading the containers (for example, upgrading to a higher
version rbrick-v2).

• It is possible to stop the currently running container version 1 and to launch
container version 2.

• It facilitates fast container updates. If an update fails, it can revert to the
previous state by stopping the second container and restarting the first one.

Rename Elements

If element.config is not available, default to using the element name as the
container name.

1.2.4. Images Management

The images are stored within Open Network Linux (ONL) at /var/cache/lxc/rtbrick.
For each image, there is one subfolder: /var/cache/lxc/rtbrick/<image-folder>. You
can identify the images based on a set of fields, as described in the following table.

Image Identification Fields and Descriptions

Field Description

organization Organization that issued the image as reverse domain name
(e.g. net.rtbrick).

category Category which can be used to describe the purpose of the
image. (e.g. customer-production)

platform Describes the Hardware Platform.

 vendor_name Vendor of the platform

 model_name Model of the platform

API References

7

Field Description

image_type Image type (for example, LXC)

image_name Image name (for example, rbfs)

element_role Element role the image was built for (for example, LEAF).

image_version Image revision to be activated
{major}.{minor}.{patch}-{prerelease}

Image Repository

The image folder contains the following files:

• A metadata.YAML which identifies the image.

There can also be additional attributes in the file, but the attributes to identify an
image have to be in the file.

An example of the RtBrick properties is shown below.

rtbrick_properties:
 organization: net.rtbrick
 category: customer-production
 platform:
 vendor_name: virtual/tofino
 model_name: virtual
 image_type: LXC
 role: LEAF
 image_name: rtbrick-rbfs
 image_version: 19.13.4-master

• A subfolder named rootfs

• The config.tpl file: This file is used to create the configuration file with the
respective data in the template.

You can use the following syntax to add a property from the dictionary provided by
ctrld.

Therefore, lxc.rootfs.path = dir:{{index . "rootfs”}} results in lxc.rootfs.path =
dir:/var/lib/lxc/mega/rootfs

API References

8

Image Download

CtrlD provides functionality to download images from a repository, therefore the
URL to the image is provided by the caller.

Optionally, the checksum algorithm and the value can be provided, after
downloading the image, the checksum will be verified.

1.2.5. Container and Element Management

LXC Containers are identified as elements if they have a metadata.yaml with the
fields described above. These LXC containers can also be revised containers, which
are created when an upgrade of a container takes place.

The revised element is named using the element name and a timestamp: revised-
{element-name}-{timestamp}.


It is not possible to rename an element. For more information, see
How to rename LXD / LXC container.

A template engine to update the LXC configuration template is used for the
container. Each container has the files in the /var/lib/lxc/{container-name} folder,
as shown in Table 3.

Files in the Container Folder

File Description

config.tpl Template for lxc configuration
This file comes directly out of the image, and is stored in this
folder for renaming the container. Because a rename
recreates the config file.

config.data Data which was used to fill the templates (config, hostconfig).
This file is saved by ctrld, it is used by rename the container,
because a rename recreates the configfile.

metadata.yaml Information about the image the container was built from.
And a lot more information.

The status of an image can be CACHED or ACTIVE, as described in the following
table.

Image Status States and Meaning

API References

9

https://www.cyberciti.biz/faq/how-to-rename-lxd-lxc-linux-container/

Status Description

CACHED This image is on the ONL

ACTIVE This image is on the ONL and is the image used for the actual
container instance.

1.2.6. CtrlD API

CtrlD has been designed with Domain Driven Design (DDD) principles. The model is
divided into modules, known as Bounded Contexts in DDD. Similarly, the CtrlD API
is organized into these modules. The CtrlD APIs are REST APIs that adhere to level
2 of the Richardson Maturity Model.

You can find an API overview within each running CtrlD instance:

http://<hostname>:<port>/public/openapi/

The CtrlD API was redesigned when ported to the Golang programming language.
To ensure extended backward compatibility, a module called AntiCorruptionLayer
is introduced to address this issue.


Some older APIs may soon be deprecated or removed, use them
with caution.

The following table shows the API tags used to group the APIs by their respective
modules.

REST API Tag Descriptions

API Tag Description

anti_corruption_lay
er

These APIs are deprecated and are only present for older
systems to ensure backward compatibility.

client These APIs are not provided by CtrlD, but rather, they are the
APIs that a client must provide to use CtrlD’s callback
function.

ctrld/config Configure CtrlD.

ctrld/containers Handle LXC containers (start, stop, delete, and list)

ctrld/elements Handle elements (start, stop, delete, upgrade, and config)

API References

10

https://martinfowler.com/articles/richardsonMaturityModel.html
https://golang.org/

API Tag Description

ctrld/rbfs Handle calls that come from the RBFS.

ctrld/images Handle all requests regarding RBFS images. (download,
delete, and list)

ctrld/jobs Get information about asynchronous tasks.

ctrld/info General information about CtrlD such as version, image, and
so on.

ctrld/events For the publish/subscribe sub-model, register for an event
and stay informed about events.

ctrld/system Communication with the underlying host system.

rbfs Communication with an RBFS element such as Proxy, File
Handling, and so on.

1.2.7. Jobs and Callbacks

The Jobs API is needed for asynchronous API calls. Asynchronous API calls can be
used with a callback, so that the caller is informed when the job is finished, or can
be used with a polling mechanism. The Job API polling asks if the job is finished.
This is sometimes easier to implement, especially for scripts like robot.

The callback mechanism uses a retry handler. The retry handler performs
automatic retries under the following conditions:

• If an error is returned by the client (such as a connection error), then the retry
is invoked after a waiting period.

• If a 500-range response code is received (except for 501 not implemented),
then the retry is invoked after a waiting period.

• For a 501 response code and all other possibilities, the response is returned
and it is up to the caller to interpret the reply.

1.2.8. Pub-Sub Model

CtrlD uses a publisher and subscriber model. This model is needed for features
not implemented directly in CtrlD, such as ZTP.

For example, the ZTP daemon (ZTPD) can subscribe to events, and ZTPD is

API References

11

informed if the event occurs in CtrlD.

1.2.9. CtrlD Logs

The log files for CtrlD are stored at /var/log/rtbrick-ctrld.log, and are rotated with
logrotate. The log rotation configuration is stored at /etc/logrotate.d/rtbrick-ctrld.

1.3. Functions and Use cases of RBFS REST APIs

1.3.1. CtrlD API

The CtrlD performs various functions in the lifecycle of an RBFS container. Zero-
Touch Provisioning installs the RBFS software on the hardware devices with
minimal human intervention. It is the responsibility of the CtrlD to initiate, discover
and download the startup configuration files as part of zero-touch provisioning
(ZTP) process. The CtrlD retrieves the base URL and executes the startup
configuration on the device, that is pre-installed with ONL, the host operating
system.

CtrlD API acts as a proxy endpoint that defines the way the API proxy interacts with
the backend services. CtrlD is a go-between, which sits in the middle, for requests
from clients and the API. As the API proxy, CtrlD, resides in front of the API,
enforcing policies that dictate the usage of the API.

CtrlD API can be used to reboot the switch with or without a software upgrade. As
a proxy endpoint, users can access the following APIs through CtrlD:

• RESTCONF API

• Operational State API

• Prometheus API

For more information about CtrlD API use case and examples, see section 5.1. CtrlD
API: Use Case and Example'.

To view the CtrlD API Reference, navigate to RBFS APIs, and select CTRLD API
Reference from the drop-down list.

API References

12

1.3.2. RESTCONF API

RESTCONF is an HTTP-based REST API protocol for network management and
automation. It provides a programmatic interface for accessing data defined in
YANG. The YANG model describes the configuration syntax. In RBFS, the RESTCONF
API provides the configuration data.

Users can use RESTCONF API to execute various configurations in RBFS. RESTCONF
API can be used for the following tasks:

• Read configurations

• Replace configurations

• Partial configuration update

• Remove configurations

For more information about RESTCONF API use case and examples, see section
5.2. RESTCONF API: Use Case and Example.

To view the RESTCONF API Reference, navigate to RBFS APIs, and select RESTCONF
API Reference from the drop-down list.

1.3.3. Operational State API

The Operational State API (opsd) provides the system state information. The ospd
is backward compatible and supports running older and newer versions of
applications together in the network. The Backward compatibility feature is useful
whenever newer RBFS releases are rolled out.

The Operational State API was implemented using the Python language that
provides a collaborative system to all stakeholders including integration partners,
customers, professional services and engineering to collaborate on the API
endpoints.

To view the Operational State API Reference, navigate to RBFS APIs, and select
Operational State API Reference from the drop-down list.

For more information about Operational State API use case and examples, see
section 5.3. Operational State API: Use Case and Example.

API References

13

1.3.4. Guidelines and Limitations

When you execute configurations through management APIs, and then with the
Command Line Interface at the same time, it results in conflicts when you commit
the configuration through the CLI. The reason is that CtrlD directly interacts with
the backend applications and these changes are not synced with the CLI.

1.4. Configure API Gateway and CtrlD Components

The section provides configuration information for various components of the API
Gateway and CtrlD. Both the API Gateway and CtrlD have been installed as part of
the RBFS installation on the host operating system. You must complete some
additional configurations for running API Gateway and CtrlD.

1.4.1. Configure API Gateway Components

The API Gateway service is called rtbrick-apigwd and the API Gateway daemon
contains some default parameters.

• To know the installed API gateway version, run the apigwd -version command.

• To display the default settings and the location of configuration files, run the
apigwd -help command.

The mandatory API Gateway configuration files include:

• API Gateway configuration file: /etc/rtbrick/apigwd/config.json

• JWKS file for access token verification:
/etc/rtbrick/apigwd/access_secret_jwks.json

• X509 public/private key file in the 'pem' format: /etc/rtbrick/apigwd/tls.pem

SSL/TLS Certificate

API Gateway uses Transport Layer Security (TLS), also known as Secure Sockets
Layer (SSL), certificates to authenticate and secure all requests pass through API
Gateway.

If there is no TLS certificate provided, API Gateway generates one certificate signed
by a self-signed root CA.

API References

14

You can specify a TLS certificate in any of the following ways:

• Deploy the TLS file through ZTP

• Provide the URL for TLS file downloading in the config.json file.

With this setting, API Gateway monitors the server periodically for new TLS files
using the HTTP caching directives as described in the RFC 7234 to avoid
unnecessary downloads.

tls.pem file

The tls.pem file, which contains the X509 certificate (public and private key),
enables TLS in PEM format (as described in the RFC 7468). The tls.pem file can be
changed on the file system. API Gateway automatically reloads the tls.pem file
whenever it gets changed or replaced.

/etc/rtbrick/apigwd/tls.pem example

-----BEGIN CERTIFICATE-----
NOT A REAL KEY
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
NOT A REAL KEY
-----END RSA PRIVATE KEY-----

JSON Web Token File

JSON Web Token (RFC 7517 enables secure transmission of information between
client and server as a JSON object. API Gateway validates the access token against
a JSON Web Key Set (JWKS) and it allows specifying two sources for the keyset. The
sources are consulted in the following order for validation:

A local file on the file system

This file can be deployed through ZTP. It is recommended to deploy a local file on
the file system. If it is an empty key set file, there is a default pre-configured file on
the system that is used.

Remote file URLs through the config.json

You can provide the JWKS remote file URLs through the config.json file. Whenever
a token needs to be verified, a JWKS file gets downloaded.

API References

15

https://datatracker.ietf.org/doc/html/rfc7234
https://tools.ietf.org/html/rfc7468
https://tools.ietf.org/html/rfc7517)

Whenever an access token needs to be verified, the API Gateway queries the
server for the current JWKS file using the HTTP caching directives (as described in
RFC 7234) to avoid unnecessary downloads.


An RFC 7234-compliant cache is used for downloading the
configuration file.

JSON Web Key Set

The JSON Web Key Set contains the public keys used to verify any JSON Web Token
issued by the authorization system.

The access_secret_jwks.json file can be updated on the file system.

API Gateway automatically reloads the tls.pem file whenever it gets changed or
replaced.

/etc/rtbrick/apigwd/access_secret_jwks.json example

{
 "keys": [
 {
 "kty": "RSA",
 "e": "AQAB",
 "use": "sig",
 "kid": "access",
 "alg": "RS256",
 "n": "NOT A REAL KEY"
 }
]
}

These keys authenticate external requests coming to the API Gateway. The right
key is selected by the kid (key id) attribute. With this key, the access tokens are
verified and converted into an RtBrick token.

config.json File

The config.json is the configuration file of the API Gateway. API Gateway
automatically reloads the file whenever it gets changed or replaced.

/etc/rtbrick/apigwd/config.json example

{
 "access_token_jwks_urls": [
 "http://192.168.202.56:8080/primaryJWKS",
 "http://192.168.202.56:8080/secondaryJWKS"
],

API References

16

https://datatracker.ietf.org/doc/html/rfc7234

 "request_rate": 5,
 "request_burst": 10,
 "report_rejects_every": 10
}

The following table presents the various attributes and the description of the
config.json file.

/etc/rtbrick/apigwd/config.json format

Name Type Description

access_token_jwk
s_urls

[]string Allows to specify multiple JWKS remote URLs.

Remote PEM file

pem_urls []string Allows to specify multiple PEM remote URLs.
Empty list disables the download.

pem_reload_time int Allows to specify the time after a new reload is
triggered. 0 disables the download.

Request rate limit

request_rate float The allowed requests per second per client.

request_burst int Is the maximum number of tokens that can be
consumed at once, without respect to the rate.

report_rejects_eve
ry

int Report rejects only every x seconds to avoid
massive logging to a GELF endpoint.

1.4.2. Control Daemon (CtrlD)

The CtrlD service is called rtbrick-ctrld and the CtrlD contains some default
parameters.

• To know the installed CtrlD version, run the ctrld -version command.

• To display the default settings and the location of configuration files, run the
ctrld -help command.

The CtrlD configuration files include:

• The CtrlD configuration file: /etc/rtbrick/ctrld/config.json

• The Role-Based Access Control policy file: /etc/rtbrick/ctrld/policy.json

API References

17

• The element configuration file for the container: /var/lib/lxc/<container-
name>/element.config

config.json file

The config.json file can be changed using API. If the file is updated on the file
system, CtrlD must be restarted.



Changes to the config.json file will come into effect only after CtrlD
gets restarted. Use the CtrlD API to apply in-service configuration
changes at runtime. CtrlD updates the config.json file to get the
changes applied through the API persistent.

/etc/rtbrick/ctrld/config.json example

{
 "element_name": "element_name",
 "pod_name": "pod_name",
 "rbms_enable": true,
 "rbms_host": "http://198.51.100.48",
 "rbms_authorization_header": "Bearer THIS IS NOT A REAL KEY",
 "rbms_heartbeat_interval": 10,
 "logging": {
 "heartbeat_interval": 60,
 "aliases": {
 "default": {
 "endpoints": [
 {
 "type": "gelf",
 "max_log_level": 5,
 "buffer_size": 500,
 "network": "http",
 "address": "http://10.200.32.49:12201/gelf"
 },
 {
 "type": "syslog",
 "max_log_level": 5,
 "buffer_size": 30,
 "network": "udp",
 "address": "10.200.32.49:516"
 }
]
 },
 "ztp": {
 "endpoints": [
 {
 "type": "gelf",
 "max_log_level": 4,
 "buffer_size": 20,
 "network": "http",
 "address": "http://10.200.32.49:12201/gelf"
 }
]
 }

API References

18

 }
 },
 "auth_enabled": false
}

The following table presents the various attributes and descriptions for CtrlD
config.json file.

/etc/rtbrick/ctrld/config.json format

Name Type Description

element_name string The name of the element (container).

pod_name string The pod name. Pod stands for point (zone) of
deployment. A pod can contain a group of
elements.

rbms_enable bool To enable all RBMS outgoing messages
rbms_host.

rbms_host string RBMS base URL. For example,
http://198.51.100.144:9009

rbms_authorization
_header

string RBMS Authorization Header is set to all calls
which are outgoing to RBMS.

rbms_heartbeat_int
erval

int RBMS heartbeat interval in seconds (⇐0 means
deactivated)

auth_enabled bool To enable the authorization and authentication.

API References

19

http://198.51.100.144:9009

logging Log configuration for the host personality of the switch. The
routing instances (elements) can configure the logging in
the RBFS configuration, and that is forwarded, for the
routing instance, to CtrlD. The alias (also known as external
log server or Plugin Alias) default acts as the default alias if
a specific alias is not defined.

Name Type Description

alias string Logical name of the endpoints. For
example, ztp for ztp messages.

Each alias can have multiple endpoints. If an alias does not
define any endpoint, the alias is disabled and the message
is not sent and to the default alias.

Name Type Description

type string Type could be syslog or gelf.

max_log_level string MaxLogLevel that will be
forwarded (default "Notice: 5)"

network string Network get network either tcp,
udp or http. Consider the support
matrix: * gelf: http * syslog: udp,
tcp

buffer_size string BufferSize that will be used for
the fanout, if the buffer is full, the
newer messages that arrive are
thrown away.

address string Address where to send the
message

formatter string The formatter that should be
used. Consider the support
matrix:

• gelf: none

• syslog: rfc5424

API References

20

policy.json file

The policy.json file is used to configure role-based access control (RBAC) for CtrlD.
This file can be changed using API. If it is changed on the file system, CtrlD must be
restarted.

/etc/rtbrick/ctrld/policy.json example

{
 "permissions": [
 {"sub": "system", "obj": "/*", "act": ".*" },
 {"sub": "supervisor", "obj": "/*", "act": ".*" },
 {"sub": "operator", "obj": "/*", "act": ".*"},
 {"sub": "reader", "obj": "/*", "act": "GET"},
 {"sub": "reader", "obj":
"/api/v1/rbfs/elements/{element_name}/services/{service_name}/proxy/bds/table/walk
", "act": ".*"},
 {"sub": "reader", "obj":
"/api/v1/rbfs/elements/{element_name}/services/{service_name}/proxy/bds/object/get
", "act": ".*"}
]
}

/etc/rtbrick/ctrld/policy.json format

Name Type Description

sub string Subjects means the role which has the permission.
Here RegexMatch Function is used: a regular
expression pattern matcher.

obj string Object is the REST endpoint. Here KeyMatch4
Function is used: KeyMatch4 determines whether
key1 matches the pattern of key2 (similar to
RESTful path), key2 can contain a * and other
patterns:

• "/foo/bar" matches "/foo/"

• "/resource1" matches "/{resource}"

• "/parent/123/child/123" matches
"/parent/{id}/child/{id}"

• "/parent/123/child/456" does not match
"/parent/{id}/child/{id}"

API References

21

https://casbin.org/docs/en/function
https://casbin.org/docs/en/function
https://casbin.org/docs/en/function

Name Type Description

act string And Action is the HTTP Method. Here RegexMatch
Function is used: a regular expression pattern
matcher.

The rules are:

• The user with the role 'system' can access all the rest endpoints and act on
them with all HTTP methods.

• The user with the role 'reader' can access all rest endpoints; but can only call
the HTTP GET method.

• All authenticated users are allowed to access the proxy endpoint with all HTTP
methods.

element.config file

The element.config file allows to rename the default element name. By default, the
element name and the container name are the same. You can use the file to
rename the default element name so that the element name and the container
name are differentiated.

/var/lib/lxc/<container-name>/element.config example

/var/lib/lxc/<container-name>/element.config format

Name Type Description

element_name string Name of the element (By default, it is the
container name).

pod_name string Name of the PoD.

ztp_enabled bool If enabled, the ZTP post process starts when the
switch is moved to the operational state "up". It is
recommended to set this to 'false'. In that case,
only the initial installation or reinstallation triggers
that process.

API References

22

https://casbin.org/docs/en/function
https://casbin.org/docs/en/function

1.5. Events

RBFS REST APIs play important roles in fetching event logs. Event logs are records
of events that occur in the different functional areas of the RBFS ecosystem. In
RBFS, there are different types of logs. Almost every daemon or module in RBFS
generates a variety of logs. All these logs, which are generated from different
components, can be exported to the log management server, where you can view
and analyze the real-time data.

Log events originate from the RBFS log facility and form a structured log record. If
logging is disabled, then no logs are produced. For more information about RBFS
Logging, see undefined/techdocs/25.2.1.6/loggingug/logging_intro.html[Logging
User Guide].

1.5.1. Alerts

Alerts are event logs that originate from alert configurations. Alerts either report
an issue or notify that an issue has been resolved. Alerts are fully under the control
of a customer. Users can implement alert rules to produce an alert that triggers
automated action in the management system. An alert event is also a business
event when it triggers automated actions.

1.5.2. Business Events

A business event is a record of events that originate from the control daemon,
irrespective of the logging configuration. Business events notify the management
system about significant state changes for triggering automated actions.

Business events are recorded by CtrlD and these events are static without any
changes release after release.

APIGwD and CtrlD send different GELF and Syslog messages about status changes
or the progress of processes to a GELF or Syslog endpoint.

The following table presents the business event message format:

GELF message format

Name Type Mandatory Description

Default Message Fields

API References

23

Name Type Mandatory Description

version String Yes The GELF message format version.
Default value: 1.1

host String Yes The hostname is assigned via DHCP
to the management interface.
Defaults to the management IP
address if no hostname is assigned.

level int Yes Message Severity. See Table-1.

timestamp float Yes Unix epoch time in seconds with an
optional fraction of milliseconds.

short_message String Yes Problem message.

full_message String No Detailed problem description.

_daemon String Yes Name of the daemon.

_log_module String Yes The module name identifies the
component that created the log
record. It allows segregating log
records into different streams. Each
stream can apply different
processing rules and also be
processed by different
organizational units of the network
operator.

_log_event String Yes The log event identifies the log
message template in the log
configuration. The log event
simplifies finding where in the
system the log record was created.
The log event should be succinct
and typically conveys a unique
reason code. In addition, the log
event should be a reference that can
be looked up in the product
troubleshooting guide.

API References

24

Name Type Mandatory Description

_serial_number String Yes The serial number of the switch. This
allows tracking hardware
replacements, even if the element
name remains the same. Empty if
not available.

_rtb_image_version String No ONL Image Version that is installed
on the switch that reports this
message.

_origin String No host or container, defines the origin
of a message. This is only set for
events that are ambiguous.

ZTP Message Fields

_config_name String No Exposes the loaded configuration
name. Only set when a configuration
file was processed or an attempt to
process the file failed (e.g., 404 Not
Found response from the HTTP
server while attempting to load the
configuration)

_config_sha1 String No Exposes the SHA1 checksum of the
loaded configuration. Only set when
the HTTP server returns a
configuration.

_operational_state String No Exposes the operational state of the
element.

Request Message Fields

_rid String No Request ID, either X-Request-ID or
new generated

_user_name String No User name out of the access token

_user_subject String No User subject out of the access token

_received_time String No Time when the requested arrived

_method String No HTTP method

_url String No HTTP url

API References

25

Name Type Mandatory Description

proto String No HTTP protocol

_remote_ip String No HTTP remote ip address

Service State Message Fields

_service_name String No Service name

_service_operationa
l_state

String No Operational Service

_service_startup_ti
me

Numb
er

No Service startup time in unix epoch
time, the number of seconds
elapsed since January 1, 1970 UTC.

_service_down_flap_
time

Numb
er

No Last down flap time in unix epoch
time, the number of seconds
elapsed since January 1, 1970 UTC.

_service_down_flap_
counter

Numb
er

No Last down flap time in unix epoch
time, the number of seconds
elapsed since January 1, 1970 UTC.

_service_restarted String No Restart is set to true if
service_startup_time was changed.

_service_scope String No Either "host" or "container" indicates
if the service is running in the host
or inside the container.

Level Descriptions as in RFC 5424

Level Name Comment

0 Emergency System is unusable

1 Alert Action must be taken immediately

2 Critical Critical conditions

3 Error Error conditions

4 Warning Warning conditions

5 Notice Normal but significant condition

6 Informational Informational messages

7 Debug Debug-level messages

API References

26

GELF sample message

{
 "_config_name": "ctrld",
 "_config_sha1": "f1e06ef1e53becde6f8baf2b2fafe7dc9c36f6f0",
 "_daemon": "ctrld",
 "_element_name": "leaf01",
 "_log_event": "ZTP0011I",
 "_log_module": "ztp",
 "_serial_number": "591654XK1902037",
 "host": "leaf01",
 "level": 6,
 "short_message": "ztp ctrld config set",
 "timestamp": 1588382356.000511,
 "version": "1.1"
}

Event Types

Instan
ce

severit
y

log_m
odule

log_event log
config

description

ztp Notice ztp ZTP0011I ctrld ztp ctrld config set

ztp Warn ztp ZTP0012W ctrld ztp ctrld config not provided

ztp Alert ztp ZTP0013E ctrld ztp ctrld config not set

ztp Notice ztp ZTP0021I ctrld ztp startup config set

ztp Warn ztp ZTP0022W ctrld ztp startup config not provided

ztp Alert ztp ZTP0023E ctrld ztp startup config not set

ztp Notice ztp ZTP0041I ctrld ztp ctrld rbac config set

ztp Warn ztp ZTP0042W ctrld ztp ctrld rbac config not
provided

ztp Alert ztp ZTP0043E ctrld ztp ctrld rbac config not set

ztp Notice ztp ZTP0051I ctrld ztp tls config set

ztp Warn ztp ZTP0052W ctrld ztp tls config not provided

ztp Alert ztp ZTP0053E ctrld ztp tls config not set

ztp Notice ztp ZTP0061I ctrld ztp accessjwks config set

ztp Warn ztp ZTP0062W ctrld ztp accessjwks config not
provided

ztp Alert ztp ZTP0063E ctrld ztp accessjwks config not set

ztp Notice ztp ZTP0071I ctrld ztp apigwd config set

API References

27

ztp Warn ztp ZTP0072W ctrld ztp apigwd config not provided

ztp Alert ztp ZTP0073E ctrld ztp apigwd config not set

ztp Notice ztp ZTP1000I ctrld ztp process finished

securit
y

Warn securit
y

SEC0001W ctrld access forbidden

securit
y

Warn securit
y

SEC0002W ctrld access invalid rtb token

securit
y

Warn securit
y

SEC0003W ctrld access invalid access token

securit
y

Warn securit
y

SEC0004W ctrld not able to download remote
keys

securit
y

Warn securit
y

SEC0005W ctrld not able to download remote
pem

securit
y

Warn securit
y

SEC0006W ctrld request rate limited (this
message is also rate limited,
and can be controlled in the
apiwd config)

eleme
nt

Notice eleme
nt

HTB0001 ctrld heartbeat with the
operational_state

eleme
nt

Notice eleme
nt

STA0001 ctrld element state change

eleme
nt

Notice eleme
nt

STA0021 ctrld service up

eleme
nt

Error eleme
nt

STA0022 ctrld service unexpected down

eleme
nt

Notice eleme
nt

STA0023 ctrld service expected down

eleme
nt

Notice eleme
nt

STA0003 ctrld ready for service

eleme
nt

Notice eleme
nt

STA0031 ctrld module new (one of the
modules is newly discovered
e.g. fan, SFP …, this event will be
fired after every reboot of ctrld)

API References

28

eleme
nt

Notice eleme
nt

STA0032 ctrld module parameter changed
(one of the parameters of the
module got changed e.g. fan,
SFP …)

eleme
nt

Notice eleme
nt

STA0033 ctrld module removed (one of the
modules got removed e.g. fan,
SFP …)

ALL Notice eleme
nt

STA0040 all messages could have been
dropped

prome
theus

? ? ? eleme
nt

messages generated by
prometheus alerts

1.6. Appendix: Use case Scenario and Examples for
RBFS REST APIs

1.6.1. CtrlD API: Use Cases and Examples

A single CtrlD instance can serve multiple RBFS containers. Each container forms a
network element and has a unique name which is the 'element name'.

All API calls (requests) to an RBFS container contain the element name in the URL
path.


BNG is used as the element name in the following examples.
NOTE: 10.0.0.1 is used as the management IP address in the
following examples.

Rebooting a Switch

This example shows how to reboot the switch.

Rebooting a switch is an example of an asynchronous operation.

The API call returns the acknowledgment immediately that the reboot request has
been accepted (HTTP Status Code 202).

The following list shows the HTTP request to reboot switch 10.0.0.1. The URL
contains no element name because the entire switch will be rebooted.

API References

29

POST /api/v1/ctrld/system/_reboot HTTP/1.1
Host: 10.0.0.1:19091

Triggering a Software Upgrade

A software upgrade can be performed by executing the Zero-Touch Provisioning
(ZTP) process again. The switch will be rebooted in Open Network Install
Environment (ONIE) update mode and allow ONIE to discover the OS installer
image and startup configuration files from the ZTP server.

Rebooting a switch is an example of asynchronous operation.

The API call returns a response immediately that the reboot request has been
accepted (HTTP Status Code 202).

The following example shows the HTTP request to reboot switch 10.0.0.1. The URL
contains no element name because the entire switch will be rebooted.

POST /api/v1/ctrld/system/_update HTTP/1.1
Host: 10.0.0.1:19091

Using the Proxy Endpoint

The CtrlD proxy endpoint forwards API calls to the daemons hosting the API in the
RBFS container. Three daemons host publicly available APIs:

• opsd, the operational state daemon, hosts the Operational State API.

• restconfd, the RESTCONF daemon, hosts the RESTCONF API.

• Prometheus hosts the Prometheus API.


All examples in the following sections use the CtrlD proxy
endpoint.

The following table summarizes the proxy endpoint paths for the daemons: opsd,
restconfd, and Prometheus and an element named BNG.

Daemon Path

Operational State Daemon (opsd) /api/v1/rbfs/elements/cnbg-
1/services/opsd/proxy

API References

30

Daemon Path

RESTCONF Daemon (restcondf) /api/v1/rbfs/elements/cnbg-
1/services/restconfd/proxy

Prometheus /api/v1/rbfs/elements/cnbg-
1/services/prometheus/proxy

1.6.2. RESTCONF API: Use Cases and Examples

Reading the Current Configuration

The following request returns the complete switch configuration.

GET /api/v1/rbfs/elements/BNG/services/restconfd/proxy/restconf/data HTTP/1.1
Host: 10.0.0.1:19091

Reading the Time-series Settings

The RESTCONF Protocol RFC describes a comprehensive query syntax, which
allows retrieving certain parts of the configuration.

The following API call retrieves all the time-series settings.

GET /api/v1/rbfs/elements/BNG/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series HTTP/1.1
Host: 10.0.0.1:19091

{
 "rtbrick-config:time-series": {
 "metric": [
 {
 "name": "subscriber_sessions",
 "table-name": "local.access.subscriber.count",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "Established subscriber sessions",
 "attribute": [
 {
 "attribute-name": "ipoe_established",
 "label": [
 {
 "label-key": "access_type",
 "label-value": "ipoe",
 "label-type": "static"
 },
 {
 "label-key": "ifp_name",

API References

31

https://www.rfc-editor.org/rfc/rfc8040.html

 "label-value": "ifp_name",
 "label-type": "dynamic"
 }
]
 }
]
 },
 {
 "name": "total_cpu_util_percent",
 "table-name": "global.chassis_0.resource.cpu_usage",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "Total CPU utilization in percent",
 "attribute": [
 {
 "attribute-name": "total_cpu",
 "label": [
 {
 "label-key": "cpu",
 "label-value": "cpu_id",
 "label-type": "dynamic"
 }
]
 }
]
 },
 {
 "name": "total_memory_free_kilobyte",
 "table-name": "global.chassis_0.resource.mem_usage",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "Total free RAM memory in kilo bytes",
 "attribute": [
 {
 "attribute-name": "free_mem",
 "label": [
 {
 "label-key": "memory",
 "label-value": "mem_id",
 "label-type": "dynamic"
 }
]
 }
]
 },
 {
 "name": "total_memory_used_kilobyte",
 "table-name": "global.chassis_0.resource.mem_usage",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "Total used RAM memory in kilo bytes",
 "attribute": [
 {
 "attribute-name": "used_mem",
 "label": [
 {
 "label-key": "memory",
 "label-value": "mem_id",
 "label-type": "dynamic"
 }
]

API References

32

 }
]
 }
]
 }
}

RESTCONF also allows filtering for a specific time series.

GET /api/v1/rbfs/elements/BNG/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric=subscriber_sessions HTTP/1.1
Host: 10.0.0.1:19091

{
 "rtbrick-config:metric": [
 {
 "name": "subscriber_sessions",
 "table-name": "local.access.subscriber.count",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "Established subscriber sessions",
 "attribute": [
 {
 "attribute-name": "ipoe_established",
 "label": [
 {
 "label-key": "access_type",
 "label-value": "ipoe",
 "label-type": "static"
 },
 {
 "label-key": "ifp_name",
 "label-value": "ifp_name",
 "label-type": "dynamic"
 }
]
 }
]
 }
]
}

In addition, RESTCONF allows querying the key values. The following API call selects
the names of the configured time-series metrics.

GET /api/v1/rbfs/elements/BNG/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric=/name HTTP/1.1
Host: 10.0.0.1:19091

{
 "rtbrick-config:name": [
 "subscriber_sessions",

API References

33

 "total_cpu_util_percent",
 "total_memory_free_kilobyte",
 "total_memory_used_kilobyte"
]
}

Adding a New Time-series

The RESTCONF API also allows replacing and adding new configurations to an
existing configuration. The data is exchanged in JSON format.


The Content-Type header must be set to application/yang-
data+json.

YANG is a modeling language that is used to describe the configurations. The
RESTCONF Open API definition is generated from the YANG models and contains a
reference to the respective YANG model.

The following API request adds a new default_bgp_prefixes_count time-series to
the RBFS configuration.

PUT /api/v1/rbfs/elements/BNG/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric=default_bgp_prefixes_count HTTP/1.1
Host: 10.0.0.1:19091
Content-Type: application/yang-data+json
Content-Length: 4315

{
 "rtbrick-config:metric": [
 {
 "name": "default_bgp_prefixes_count",
 "table-name": "default.bgp.peer",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "BGP peerings default instance",
 "attribute": [
 {
 "attribute-name": "ipv4_unicast_update_rcvd_cnt",
 "label": [
 {
 "label-key": "afi",
 "label-value": "ipv4",
 "label-type": "static"
 },
 {
 "label-key": "direction",
 "label-value": "in",
 "label-type": "static"
 },
 {
 "label-key": "peer",
 "label-value": "peer_ipv4_address",

API References

34

 "label-type": "dynamic"
 },
 {
 "label-key": "safi",
 "label-value": "unicast",
 "label-type": "static"
 }
]
 },
 {
 "attribute-name": "ipv4_unicast_update_sent_cnt",
 "label": [
 {
 "label-key": "afi",
 "label-value": "ipv4",
 "label-type": "static"
 },
 {
 "label-key": "direction",
 "label-value": "out",
 "label-type": "static"
 },
 {
 "label-key": "peer",
 "label-value": "peer_ipv4_address",
 "label-type": "dynamic"
 },
 {
 "label-key": "safi",
 "label-value": "unicast",
 "label-type": "static"
 }
]
 },
 {
 "attribute-name": "ipv6_unicast_update_rcvd_cnt",
 "label": [
 {
 "label-key": "afi",
 "label-value": "ipv6",
 "label-type": "static"
 },
 {
 "label-key": "direction",
 "label-value": "in",
 "label-type": "static"
 },
 {
 "label-key": "peer",
 "label-value": "peer_ipv4_address",
 "label-type": "dynamic"
 },
 {
 "label-key": "safi",
 "label-value": "unicast",
 "label-type": "static"
 }
]
 },
 {
 "attribute-name": "ipv6_unicast_update_sent_cnt",

API References

35

 "label": [
 {
 "label-key": "afi",
 "label-value": "ipv6",
 "label-type": "static"
 },
 {
 "label-key": "direction",
 "label-value": "out",
 "label-type": "static"
 },
 {
 "label-key": "peer",
 "label-value": "peer_ipv4_address",
 "label-type": "dynamic"
 },
 {
 "label-key": "safi",
 "label-value": "unicast",
 "label-type": "static"
 }
]
 }
]
 }
]
}

The API returns a 201 Created response if a new metric was added and returns 204
No Content if an existing metric got updated.

Removing a Time-series

The following API request removes the default_bgp_prefixes_count time series
from the switch configuration.

DELETE /api/v1/rbfs/elements/BNG/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric=default_bgp_prefixes_count HTTP/1.1
Host: 10.0.0.1:19091

The API returns a 204 No Content response if the delete operation succeeded. Any
API call to remove a configuration that does not exist results in a 409 Conflict error
response.

Example Response:

{
 "ietf-restconf:errors": {
 "error": {
 "error-type": "application",
 "error-tag": "data-missing",

API References

36

 "error-severity": "error",
 "error-message": "Data does not exist; cannot delete resource"
 }
 }
}

1.6.3. Operational State API: Use Cases and Examples

The operational state API provides access to operational state data, including
routing protocols, subscriber, and system state information. The operational state
is a runtime information and will be reset after each reboot.


The operational state API is accessed through the CtrlD proxy
endpoint.


Use Prometheus for operational state monitoring and metric
sampling.

Querying Subscriber Sessions

The following example shows how to read up to five (limit=5) active subscriber
sessions on port ifp-0/0/0 (ifp_name=ifp-0/0/0).

GET /api/v1/rbfs/elements/BNG/services/opsd/proxy/subscribers?ifp_name=ifp-
0/0/0&limit=5 HTTP/1.1
Host: 10.0.0.1:19091

The API call uses the CtrlD proxy endpoint to invoke the Operational State API, the
element name is BNG and the service name is opsd.

The following example shows five IPoE subscriber sessions.

[
 {
 "subscriber_id": 216454257090494480,
 "subscriber_id_str": "216454257090494480",
 "subscriber_state": "ESTABLISHED",
 "subscriber_user_name": "02:00:00:00:00:06@ipoe",
 "access_type": "IPoE",
 "accounting_session_id": "216454257090494480:1695654885",
 "ifp_name": "ifp-0/0/0",
 "outer_vlan": 128,
 "inner_vlan": 6,
 "client_mac": "02:00:00:00:00:06",
 "agent_remote_id": "DEU.RTBRICK.6",
 "agent_circuit_id": "0.0.0.0/0.0.0.0 eth 0:6"
 },

API References

37

 {
 "subscriber_id": 216454257090494481,
 "subscriber_id_str": "216454257090494481",
 "subscriber_state": "ESTABLISHED",
 "subscriber_user_name": "02:00:00:00:00:07@ipoe",
 "access_type": "IPoE",
 "accounting_session_id": "216454257090494481:1695654885",
 "ifp_name": "ifp-0/0/0",
 "outer_vlan": 128,
 "inner_vlan": 7,
 "client_mac": "02:00:00:00:00:07",
 "agent_remote_id": "DEU.RTBRICK.7",
 "agent_circuit_id": "0.0.0.0/0.0.0.0 eth 0:7"
 },
 {
 "subscriber_id": 216454257090494482,
 "subscriber_id_str": "216454257090494482",
 "subscriber_state": "ESTABLISHED",
 "subscriber_user_name": "02:00:00:00:00:08@ipoe",
 "access_type": "IPoE",
 "accounting_session_id": "216454257090494482:1695654885",
 "ifp_name": "ifp-0/0/0",
 "outer_vlan": 128,
 "inner_vlan": 8,
 "client_mac": "02:00:00:00:00:08",
 "agent_remote_id": "DEU.RTBRICK.8",
 "agent_circuit_id": "0.0.0.0/0.0.0.0 eth 0:8"
 },
 {
 "subscriber_id": 216454257090494483,
 "subscriber_id_str": "216454257090494483",
 "subscriber_state": "ESTABLISHED",
 "subscriber_user_name": "02:00:00:00:00:09@ipoe",
 "access_type": "IPoE",
 "accounting_session_id": "216454257090494483:1695654885",
 "ifp_name": "ifp-0/0/0",
 "outer_vlan": 128,
 "inner_vlan": 9,
 "client_mac": "02:00:00:00:00:09",
 "agent_remote_id": "DEU.RTBRICK.9",
 "agent_circuit_id": "0.0.0.0/0.0.0.0 eth 0:9"
 },
 {
 "subscriber_id": 216454257090494484,
 "subscriber_id_str": "216454257090494484",
 "subscriber_state": "ESTABLISHED",
 "subscriber_user_name": "02:00:00:00:00:0a@ipoe",
 "access_type": "IPoE",
 "accounting_session_id": "216454257090494484:1695654885",
 "ifp_name": "ifp-0/0/0",
 "outer_vlan": 128,
 "inner_vlan": 10,
 "client_mac": "02:00:00:00:00:0a",
 "agent_remote_id": "DEU.RTBRICK.10",
 "agent_circuit_id": "0.0.0.0/0.0.0.0 eth 0:10"
 }
]

Each subscriber session has a unique subscriber ID and the subscriber ID is an

API References

38

unsigned 64-bit integer.

The subscriber_id holds the numeric subscriber ID value, while subscriber_id_str
contains a string representation of the subscriber ID.



Some tools and programming libraries comply I-JSON standard.
This standard defines numeric values as double-precision floating-
point numbers. As a result, subscriber ID values will be rounded
and may confuse. It is recommended to read the subscriber ID
from the subscriber_id_str in such environments.

Terminating a Subscriber Session

The following API call terminates the subscriber session for the subscriber with the
subscriber ID: 216454257090494484.

DELETE
/api/v1/rbfs/elements/BNG/services/opsd/proxy/subscribers/216454257090494484
HTTP/1.1
Host: 10.0.0.1:19091

The switch returns a 202 Accepted status code to acknowledge that the session is
going to be terminated.

1.6.4. Prometheus: Use Cases and Examples

Accessing the Federation Endpoint

The Prometheus federation endpoint returns all metrics collected by Prometheus
in the Prometheus Exposition Format.

GET
/api/v1/rbfs/elements/BNG/services/prometheus/proxy/federate?match%5B%5D=%7Bjob%3D
%22bds%22%7D HTTP/1.1
Host: 10.0.0.1:19091


The match condition is required to select all BDS metrics that is
metrics collected from brick daemons and the brick data store
(BDS).

API References

39

https://www.rfc-editor.org/rfc/rfc7493.html

1.7. Related Documentation

/ONIE/ The ONIE documentation outlines the DHCP options supported
for image discovery.
https://opencomputeproject.github.io/onie/design-spec/
discovery.html

/ZTP/ The undefined/techdocs/25.2.1.6/tools/rbfs-ztp.html[Zero-Touch
Provisioning Guide] outlines the current configuration discovery
process.

/SEC/ The
undefined/techdocs/25.2.1.6/secmgmt/secmgmt_intro.html[Secu
ring the Management Plane Guide] Secure the Management
Plane guide gives a detailed insight on this topic.

/RADIUS/ The
undefined/techdocs/25.2.1.6/radiusservices/radiusservices_intro.
html[RADIUS Services Guide] provides an overview of the
supported RADIUS attributes including a reference to the RFC
that defines the message attribute.

/CTRLD/ The CTRLD API reference describes all CTRLD REST API endpoints
in detail. To view the CtrlD API Reference, navigate to RBFS APIs,
and select CTRLD API Reference from the drop-down list.

/RESTCONF/ The RESTCONF API reference describes all configuration API
endpoints. To view the RESTCONF API Reference, navigate to
RBFS APIs, and select RESTCONF API Reference from the drop-
down list.

/GELF/ The Graylog Extended Log Format (GELF) is a log format, this
document outlines the fundamentals.
To obtain this document, contact your customer support team.

API References

40

https://opencomputeproject.github.io/onie/design-spec/discovery.html
https://opencomputeproject.github.io/onie/design-spec/discovery.html

2. RBFS APIs
 <link rel="stylesheet" type="text/css" href="./_attachments/swagger-ui.css">
 <link rel="stylesheet" type="text/css" href="./_attachments/rtbrick-swagger.css">
 <div id="swagger-ui"></div>
 <script src="./_attachments/swagger-ui-bundle.js"></script>
 <script src="./_attachments/swagger-ui-standalone-preset.js"></script>
 <script>
 window.onload = function () {
 const DisableTryItOutPlugin = function() {
 return {
 statePlugins: {
 spec: {
 wrapSelectors: {
 allowTryItOutFor: () => () => false
 }
 }
 }
 }
 }

 // Begin Swagger UI call region
 const ui = SwaggerUIBundle({
 urls: [
 { "url": "./_attachments/rbfs/openapi_ctrld.yaml", "name": "CTRLD API
Reference" },
 { "url": "./_attachments/rbfs/rtbrick-config_restconf_swagger.json",
"name": "RESTCONF API Reference" },
 { "url": "./_attachments/rbfs/swagger_opsd.yaml", "name": "Operational
State API Reference" },
 { "url": "./_attachments/rbfs/swagger_bds.yaml", "name": "BDS API
Reference" },
],
 dom_id: '#swagger-ui',
 deepLinking: true,
 docExpansion:"none",
 presets: [
 SwaggerUIBundle.presets.apis,
 SwaggerUIStandalonePreset
],
 plugins: [
 SwaggerUIBundle.plugins.DownloadUrl,
 DisableTryItOutPlugin
],
 layout: "StandaloneLayout"
 })
 // End Swagger UI call region

 window.ui = ui
 }
 </script>

API References

41

	Technical Documentation: API References
	Table of Contents
	1. RBFS API User Guide
	1.1. RBFS REST APIs
	1.1.1. Introduction to RBFS REST APIs
	1.1.2. Understanding RBFS APIs

	1.2. Controller Daemon
	1.2.1. CtrlD Overview
	1.2.2. CtrlD Parameters
	1.2.3. Container Management
	1.2.4. Images Management
	1.2.5. Container and Element Management
	1.2.6. CtrlD API
	1.2.7. Jobs and Callbacks
	1.2.8. Pub-Sub Model
	1.2.9. CtrlD Logs

	1.3. Functions and Use cases of RBFS REST APIs
	1.3.1. CtrlD API
	1.3.2. RESTCONF API
	1.3.3. Operational State API
	1.3.4. Guidelines and Limitations

	1.4. Configure API Gateway and CtrlD Components
	1.4.1. Configure API Gateway Components
	1.4.2. Control Daemon (CtrlD)

	1.5. Events
	1.5.1. Alerts
	1.5.2. Business Events

	1.6. Appendix: Use case Scenario and Examples for RBFS REST APIs
	1.6.1. CtrlD API: Use Cases and Examples
	1.6.2. RESTCONF API: Use Cases and Examples
	1.6.3. Operational State API: Use Cases and Examples
	1.6.4. Prometheus: Use Cases and Examples

	1.7. Related Documentation

	2. RBFS APIs

