;; rtbrick

APl References

Version 25.2.1.6, 12 January 2026

Table of Contents

1. RBFS API User Guide

1.1. RBFS REST APIs
1.1.1. Introduction to RBFS REST APIs
1.1.2. Understanding RBFS APIs
1.2. Controller Daemon
1.2.1. CtrID Overview
1.2.2. CtrID Parameters
1.2.3. Container Management
1.2.4. Images Management
1.2.5. Container and Element Management
1.2.6. CtrID API
1.2.7.)obs and Callbacks
1.2.8. Pub-Sub Model
1.2.9. CtrID Logs
1.3. Functions and Use cases of RBFS REST APIs
1.3.1. CtrID API
1.3.2. RESTCONF API
1.3.3. Operational State API
1.3.4. Guidelines and Limitations
1.4. Configure APl Gateway and CtrID Components
1.4.1. Configure APl Gateway Components
1.4.2. Control Daemon (CtrID)
1.5. Events
1.5.1. Alerts
1.5.2. Business Events
1.6. Appendix: Use case Scenario and Examples for RBFS REST APIs
1.6.1. CtrID API: Use Cases and Examples
1.6.2. RESTCONF API: Use Cases and Examples
1.6.3. Operational State API: Use Cases and Examples
1.6.4. Prometheus: Use Cases and Examples

1.7. Related Documentation

2. RBFS APIs

API| References

1. RBFS API User Guide

1.1. RBFS REST APIs

This document contains all the information about RBFS REST API services, their
purposes and how to use these APIs. This documentation goes hand-in-hand with
the RBFS OpenAPI document which provides information about all RBFS REST API
endpoints. It is recommended to refer to this document in conjunction with the
RBFS OpenAPI document.

1.1.1. Introduction to RBFS REST APIs

RBFS REST APIs allow customers and partners to programmatically access
information from the RBFS software components. RBFS REST APIs enable users to
manage and automate many of their tasks by accessing and consuming the RBFS
data simply and securely.

RBFS REST API architecture supports containerized deployments with a centralized
configuration and management. It also enables the configuration and
management of distinct daemons and services.

RBFS APIs adhere to the Representational State Transfer (REST) principles and
allow consumers to securely connect to the RBFS device, obtain information (read)
and run actions or operations to apply changes. RBFS REST APIs use JavaScript
Object Notation (JSON) for the exchange of information. The OpenAPI Specification
format, which is a broadly accepted industry standard for describing REST APIs, is
used to describe, consume, and visualize RBFS REST APIs.

1.1.2. Understanding RBFS APIs

RBFS, a disaggregated Broadband Network Gateway, provides many APIs to make
all communications possible with various RBFS software components, the host
operating system (ONL), and the hardware platform. RBFS consists of several
independent microservices including the APl Gateway daemon (ApiGwD) and
Control daemon (CtrlD). Both of these microservices, known as daemons, play
crucial roles in managing RBFS instances.

APl gateway functions only if management plane security is enabled. All API
requests from external clients are routed to the APl Gateway. After successful

AP| References

authentication by the APl Gateway, these requests are forwarded to the Control
daemon. CtrID, which is aware of the state and port information of all daemons
that reside in the RBFS container, can forward requests to the respective daemons.

o If security is disabled, APl Gateway does not function and, then
CtrID becomes the first entry point for external requests.

RBFS Management APIs

CtrlD APl <& BDs
RESTCONF S
. S
—— ~ £
API O
api
gwd .
Operational < -
State API
| [BDS tables |
BDS AP ‘ BDS tables
BD APl -«
internal LXC
APls 0

Figure 1. RBFS REST APIs

The illustration presents how the RBFS REST APIs communication happens with
various underlying software components. RBFS microservices, which perform
various functions, are containerized in an open Linux container. RBFS APIs are
generally categorized into Public Management APIs and Internal APIs. Public
Management APIs include CtrlID API, RESTCONF API, and Operational state API.
These APIs are used for managing and automating many of the network
administration tasks.

o The use of internal APIs such Brick Daemon APIs and BDS APIs are
not supported.

The illustration also presents the API Gateway daemon (ApiGwD) and Control
daemon (CtrID), which are deployed on the host operating system (open network
Linux) along with the RBFS container. The APl Gateway acts as an entry point that
provides a secure channel for all REST APIs by authenticating all requests. After
successful authentication by the APl Gateway, CtrID (Control Daemon) passes all
the requests to the respective daemons (that reside in the RBFS container) which
are responsible for performing certain tasks.

API| References

RBFS APIs

CtrID API: CtrID runs on the host OS (ONL) and acts as a proxy to the other APIs
including high-level APIs for the RBFS configurations. The CtrID API, implemented
by the CtrID, performs various tasks such as starting the container and rebooting
the device. In case of a software upgrade, this APl is used to trigger the upgrade.

API Gateway: You can deploy the APl Gateway Daemon (ApiGwD) on the host OS
(that is ONL) to secure the RBFS management plane. The APl Gateway
authenticates all APl requests using JSON web tokens. The APl Gateway Daemon
acts as the TLS endpoint for the hardware platform and it converts external access
token into an internal RtBrick token /SEC/. Finally, it forwards the requests to the
CtrID.

The APl Gateway also enforces an API throttler that provides a mechanism called
API throttle quotas to protect the RBFS system resources from being exhausted
with too many requests by a single client system that uses the RBFS APIs very
extensively.

Operational State APIs: The Operational State API, provided by the Operational
State Daemon (opsd), allows accessing system states such as routing protocol
states, interface states, subscriber states and resource utilization. The Operational
State Daemon takes care of examining the operational state of a switch and runs
actions to diagnose and troubleshoot the problems. The operational state is
ephemeral and state data is lost when the switch reboots.

RESTCONF APIs: With RESTCONF, you can manage all the configurations in RBFS.

Prometheus APIs: Prometheus APIs help to retrieve metrics from various RBFS
components for visibility.

0 RFC and draft compliance mentioned in the document are partial
except as specified.

1.2. Controller Daemon

This chapter provides information about the Controller Daemon (CtrID) which is a
major software component in the RBFS ecosystem. It serves as a proxy to various
APIs, including high-level APIs for RBFS configurations.

API| References

1.2.1. CtrID Overview

CtrID operates on the host OS (ONL) and it is the single entry point to the router
running the RBFS software. CtrID controls and manages most of the tasks and
functions in an RBFS ecosystem. You can run multiple instances of the CtrID on an
RBFS device.

CtrID is deployed on ONL (Open Network Linux) and acts as an intermediary
between the RBFS container in the ONL and external systems. The following
illustration presents a high-level overview of CtrlD.

Control and Management

]
]
]
[]
Sefl | .
5 © E X APIGWD API 229
i i o |
X o
1 CTRLD APl
]
]
; /
: RESTOMF—| OPSD | API
X AP L
]
]
i Prom- | l
1 etheus e
: brick
' daemon
ZTP " BDS / any
! Switch
Management

Figure 2. CtrID Overview

The CtrID API, implemented by CtrID, performs multiple tasks such as initiating the
container and rebooting the device. In the event of a software upgrade, CtrID APl is
used to trigger the upgrade process.

CtrID also manages the container and controls the interaction between the
different external systems such as Graylog. CtrID uses REST APIs to control and
manage the router. CtrID is also responsible for gathering data from the router
and forwarding this information to other systems.

CtrID plays different roles in an RBFS ecosystem. It is the gateway for all other

API| References

components interacting within or outside of an RBFS device. CtrID acts as:

+ Controller for router device running RBFS.
« Controller for elements in the device, such as LXC containers.

+ Gateway to RBFS images and packages.

1.2.2. CtrID Parameters

In a production environment, the CtrID binary starts with default parameters as
the rtbrick-ctrld service. To see these default parameters, use the ctrid -h
command.

$ ctrld -h
Usage of ctrld:
-addr string
HTTP network address (default ":19091")
-config string
Configuration for the ctrld (default "/etc/rtbrick/ctrld/config.json")
-l xccache string | xc I mage Cache fol der (default "/var/cache/rtbrick")
-servefronfs
Serves fromfilesystem is only used for devel opnent
-version
Returns the software version

CtrID Version

The command ctrld -version displays the installed version of the daemon. The
version should be tagged correctly in the repository.

The CtrID configuration can be located in the JSON file:
/etc/rtbrick/ctrld/config.json. Use the cat command to display the file content.

Example:

$ cat /etc/rtbrick/ctrld/config.json

{
"rbns_enabl e": true,
"rbns_host": "http://198.51.100.77"
"rbns_aut hori zati on_header": "Basic YWRt aW6YWRt aWi=",
"rbns_heartbeat _interval": 600
}

API| References

1.2.3. Container Management

CtrID serves as the manager for containers. However, the RBMS, an external RBFS
management system, is not aware of these containers, necessitating a systematic
mapping. Understanding the correlation between RBMS, CtrID, and Linux
Containers (LXC) is important.

RBMS contains various elements, each uniquely identified by a name, representing
a running RBFS instance. You can upgrade or downgrade Elements.

Each RBMS Element includes services. These services not only characterize the
Element’s functionalities but also encapsulate the services running within it.

The foundational unit in the model is the 'element container', whether a single
element exists on an ONL or not. The following figure illustrates the general
structure of daemons and containers within the RBFS service model.

ONL
Q5=
CtriD Element out dated
<<DEAMON=> <<CONTAINER>> <<CONTAINER>>
AccessD LogD
<<DEAMON=> <<DEAMON=>

Figure 3. Service Model for RBFS

In the event of an Element undergoing upgrade or downgrade, the system
automatically preserves the previous version within an outdated container. It
enables the recovery of the outdated container, if the upgrade or downgrade fails.
By maintaining the backup, it minimizes potential disruptions and safeguards
against data loss.

API| References

Both 'element' and 'container' are different in RBFS. In RBFS, a container always
refers to an Ixc-container. However, in a white box environment, a container is
denoted simply as rtbrick.

You can configure the element-name and the pod-name of a container in the Ixc-
container root directory at: /var/lib/Ixc/rtbrick/element.confg.

This method offers several benefits:
Updating Container

+ Upgrading or downgrading the containers (for example, upgrading to a higher
version rbrick-v2).

* It is possible to stop the currently running container version 1 and to launch
container version 2.

* It facilitates fast container updates. If an update fails, it can revert to the
previous state by stopping the second container and restarting the first one.

Rename Elements

If element.config is not available, default to using the element name as the
container name.

1.2.4. Images Management

The images are stored within Open Network Linux (ONL) at /var/cache/Ixc/rtbrick.
For each image, there is one subfolder: /var/cache/Ixc/rtbrick/<image-folder>. You
can identify the images based on a set of fields, as described in the following table.
Image Identification Fields and Descriptions
Field Description

organization Organization that issued the image as reverse domain name
(e.g. net.rtbrick).

category Category which can be used to describe the purpose of the
image. (e.g. customer-production)

platform Describes the Hardware Platform.
vendor_name Vendor of the platform

model_name Model of the platform

API| References

Field Description

image_type Image type (for example, LXC)

image_name Image name (for example, rbfs)

element_role Element role the image was built for (for example, LEAF).
image_version Image revision to be activated

{major}.{minor}.{patch}-{prerelease}

Image Repository

The image folder contains the following files:
« A metadata.YAML which identifies the image.

There can also be additional attributes in the file, but the attributes to identify an
image have to be in the file.

An example of the RtBrick properties is shown below.

rtbrick_properties:

organi zation: net.rtbrick

category: customer-production

pl at f orm
vendor _name: virtual/tofino
nmodel _name: virtua

i mge_type: LXC

rol e: LEAF

i mge_nane: rtbrick-rbfs

i mage_version: 19.13. 4-master

* A subfolder named rootfs
* The config.tpl file: This file is used to create the configuration file with the

respective data in the template.

You can use the following syntax to add a property from the dictionary provided by
ctrld.

Therefore, Ixc.rootfs.path = dir:{{index . "rootfs"}} results in Ixc.rootfs.path =
dir:/var/lib/Ixc/mega/rootfs

API| References

Image Download

CtrID provides functionality to download images from a repository, therefore the
URL to the image is provided by the caller.

Optionally, the checksum algorithm and the value can be provided, after
downloading the image, the checksum will be verified.

1.2.5. Container and Element Management

LXC Containers are identified as elements if they have a metadata.yaml| with the
fields described above. These LXC containers can also be revised containers, which
are created when an upgrade of a container takes place.

The revised element is named using the element name and a timestamp: revised-
{element-name}-{timestamp}.

0 It is not possible to rename an element. For more information, see
How to rename LXD / LXC container.

A template engine to update the LXC configuration template is used for the
container. Each container has the files in the /var/lib/Ixc/{container-name} folder,
as shown in Table 3.

Files in the Container Folder

File Description

config.tpl Template for Ixc configuration
This file comes directly out of the image, and is stored in this
folder for renaming the container. Because a rename
recreates the config file.

config.data Data which was used to fill the templates (config, hostconfig).
This file is saved by ctrld, it is used by rename the container,
because a rename recreates the configfile.

metadata.yaml Information about the image the container was built from.
And a lot more information.

The status of an image can be CACHED or ACTIVE, as described in the following
table.

Image Status States and Meaning

https://www.cyberciti.biz/faq/how-to-rename-lxd-lxc-linux-container/

API| References

Status Description
CACHED This image is on the ONL
ACTIVE This image is on the ONL and is the image used for the actual

container instance.

1.2.6. CtriD API

CtrID has been designed with Domain Driven Design (DDD) principles. The model is
divided into modules, known as Bounded Contexts in DDD. Similarly, the CtrlD API
is organized into these modules. The CtrID APIs are REST APIs that adhere to level
2 of the Richardson Maturity Model.

You can find an APl overview within each running CtrID instance:
http://<host name>: <port >/ publ i c/ openapi /

The CtrID APl was redesigned when ported to the Golang programming language.
To ensure extended backward compatibility, a module called AntiCorruptionLayer
is introduced to address this issue.

0 Some older APIs may soon be deprecated or removed, use them
with caution.

The following table shows the API tags used to group the APIs by their respective
modules.

REST API Tag Descriptions

APl Tag Description

anti_corruption_lay These APIs are deprecated and are only present for older

er systems to ensure backward compatibility.

client These APIs are not provided by CtrID, but rather, they are the
APIs that a client must provide to use CtrID’s callback
function.

ctrld/config Configure CtrID.

ctrld/containers Handle LXC containers (start, stop, delete, and list)

ctrld/elements Handle elements (start, stop, delete, upgrade, and config)

10

https://martinfowler.com/articles/richardsonMaturityModel.html
https://golang.org/

API| References

API Tag Description
ctrld/rbfs Handle calls that come from the RBFS.
ctrld/images Handle all requests regarding RBFS images. (download,

delete, and list)

ctrld/jobs Get information about asynchronous tasks.

ctrld/info General information about CtrID such as version, image, and
So on.

ctrld/events For the publish/subscribe sub-model, register for an event

and stay informed about events.
ctrld/system Communication with the underlying host system.

rbfs Communication with an RBFS element such as Proxy, File
Handling, and so on.

1.2.7. Jobs and Callbacks

The Jobs APl is needed for asynchronous API calls. Asynchronous API calls can be
used with a callback, so that the caller is informed when the job is finished, or can
be used with a polling mechanism. The Job API polling asks if the job is finished.
This is sometimes easier to implement, especially for scripts like robot.

The callback mechanism uses a retry handler. The retry handler performs
automatic retries under the following conditions:

« If an error is returned by the client (such as a connection error), then the retry
is invoked after a waiting period.

+ If a 500-range response code is received (except for 501 not implemented),
then the retry is invoked after a waiting period.

« For a 501 response code and all other possibilities, the response is returned
and it is up to the caller to interpret the reply.

1.2.8. Pub-Sub Model

CtrID uses a publisher and subscriber model. This model is needed for features
not implemented directly in CtrID, such as ZTP.

For example, the ZTP daemon (ZTPD) can subscribe to events, and ZTPD is

11

API| References

informed if the event occurs in CtrID.

1.2.9. CtrID Logs

The log files for CtrID are stored at /var/log/rtbrick-ctrld.log, and are rotated with
logrotate. The log rotation configuration is stored at /etc/logrotate.d/rtbrick-ctrld.

1.3. Functions and Use cases of RBFS REST APIs

1.3.1. CtriD API

The CtrID performs various functions in the lifecycle of an RBFS container. Zero-
Touch Provisioning installs the RBFS software on the hardware devices with
minimal human intervention. It is the responsibility of the CtrID to initiate, discover
and download the startup configuration files as part of zero-touch provisioning
(ZTP) process. The CtrID retrieves the base URL and executes the startup
configuration on the device, that is pre-installed with ONL, the host operating
system.

CtrID API acts as a proxy endpoint that defines the way the API proxy interacts with
the backend services. CtrID is a go-between, which sits in the middle, for requests
from clients and the API. As the API proxy, CtrID, resides in front of the API,
enforcing policies that dictate the usage of the API.

CtrID API can be used to reboot the switch with or without a software upgrade. As
a proxy endpoint, users can access the following APIs through CtrlD:

* RESTCONF API
+ Operational State API

* Prometheus API

For more information about CtrID APl use case and examples, see section 5.1. CtrID
API: Use Case and Example'.

To view the CtrID API Reference, navigate to RBFS APIs, and select CTRLD API
Reference from the drop-down list.

12

API| References

1.3.2. RESTCONF API

RESTCONF is an HTTP-based REST API protocol for network management and
automation. It provides a programmatic interface for accessing data defined in
YANG. The YANG model describes the configuration syntax. In RBFS, the RESTCONF
API provides the configuration data.

Users can use RESTCONF API to execute various configurations in RBFS. RESTCONF
API can be used for the following tasks:

+ Read configurations

* Replace configurations

+ Partial configuration update

* Remove configurations

For more information about RESTCONF API use case and examples, see section
5.2. RESTCONF API: Use Case and Example.

To view the RESTCONF API Reference, navigate to RBFS APIs, and select RESTCONF
API Reference from the drop-down list.

1.3.3. Operational State API

The Operational State API (opsd) provides the system state information. The ospd
is backward compatible and supports running older and newer versions of
applications together in the network. The Backward compatibility feature is useful
whenever newer RBFS releases are rolled out.

The Operational State APl was implemented using the Python language that
provides a collaborative system to all stakeholders including integration partners,
customers, professional services and engineering to collaborate on the API
endpoints.

To view the Operational State APl Reference, navigate to RBFS APIs, and select
Operational State API Reference from the drop-down list.

For more information about Operational State APl use case and examples, see
section 5.3. Operational State API: Use Case and Example.

13

API| References

1.3.4. Guidelines and Limitations

When you execute configurations through management APIs, and then with the
Command Line Interface at the same time, it results in conflicts when you commit
the configuration through the CLI. The reason is that CtrID directly interacts with
the backend applications and these changes are not synced with the CLI.

1.4. Configure APl Gateway and CtrID Components

The section provides configuration information for various components of the API
Gateway and CtrID. Both the API Gateway and CtrID have been installed as part of
the RBFS installation on the host operating system. You must complete some
additional configurations for running API Gateway and CtrID.

1.4.1. Configure APl Gateway Components

The API Gateway service is called rtbrick-apigwd and the APl Gateway daemon
contains some default parameters.
+ To know the installed APl gateway version, run the apigwd -version command.
+ To display the default settings and the location of configuration files, run the
apigwd -help command.

The mandatory API Gateway configuration files include:

+ API Gateway configuration file: /etc/rtbrick/apigwd/config.json

« JWKS file for access token verification:
/etc/rtbrick/apigwd/access_secret_jwks.json

*+ X509 public/private key file in the 'pem' format: /etc/rtbrick/apigwd/tls.pem

SSL/TLS Certificate

APl Gateway uses Transport Layer Security (TLS), also known as Secure Sockets
Layer (SSL), certificates to authenticate and secure all requests pass through API
Gateway.

If there is no TLS certificate provided, APl Gateway generates one certificate signed
by a self-signed root CA.

14

API| References

You can specify a TLS certificate in any of the following ways:

* Deploy the TLS file through ZTP

* Provide the URL for TLS file downloading in the config.json file.

With this setting, APl Gateway monitors the server periodically for new TLS files
using the HTTP caching directives as described in the RFC 7234 to avoid
unnecessary downloads.

tls.pem file

The tls.pem file, which contains the X509 certificate (public and private key),
enables TLS in PEM format (as described in the RFC 7468). The tls.pem file can be
changed on the file system. APl Gateway automatically reloads the tls.pem file
whenever it gets changed or replaced.

/etc/rtbrick/apigwd/tls.pem example

----- BEG N CERTI FI CATE- - - - -

NOT A REAL KEY

----- END CERTI FI CATE- - - - -

----- BEG N RSA PRI VATE KEY-----
NOT A REAL KEY

----- END RSA PRI VATE KEY-----

JSON Web Token File

JSON Web Token (RFC 7517 enables secure transmission of information between
client and server as a JSON object. APl Gateway validates the access token against
a JSON Web Key Set (JWKS) and it allows specifying two sources for the keyset. The
sources are consulted in the following order for validation:

A local file on the file system

This file can be deployed through ZTP. It is recommended to deploy a local file on
the file system. If it is an empty key set file, there is a default pre-configured file on
the system that is used.

Remote file URLs through the config.json

You can provide the JWKS remote file URLs through the config.json file. Whenever
a token needs to be verified, a JWKS file gets downloaded.

15

https://datatracker.ietf.org/doc/html/rfc7234
https://tools.ietf.org/html/rfc7468
https://tools.ietf.org/html/rfc7517)

API| References

Whenever an access token needs to be verified, the APl Gateway queries the
server for the current JWKS file using the HTTP caching directives (as described in
RFC 7234) to avoid unnecessary downloads.

6 An RFC 7234-compliant cache is used for downloading the
configuration file.

JSON Web Key Set

The JSON Web Key Set contains the public keys used to verify any JSON Web Token
issued by the authorization system.

The access_secret_jwks.json file can be updated on the file system.

APl Gateway automatically reloads the tls.pem file whenever it gets changed or
replaced.

/etc/rtbrick/apigwd/access_secret jwks.json example

{

"keys": [
{
"kty": "RSA",
"e": "AQAB',
"use": "sig",
"kid": "access",
"al g": "RS256",

"n": "NOT A REAL KEY"

These keys authenticate external requests coming to the APl Gateway. The right
key is selected by the kid (key id) attribute. With this key, the access tokens are
verified and converted into an RtBrick token.

config.json File

The config.json is the configuration file of the APl Gateway. APl Gateway
automatically reloads the file whenever it gets changed or replaced.

/etc/rtbrick/apigwd/config.json example

{

"access_token_jwks_urls": [
“http://192.168. 202. 56: 8080/ pri mar yJVKS",
"http://192. 168. 202. 56: 8080/ secondar yJVKS"

L

16

https://datatracker.ietf.org/doc/html/rfc7234

API| References

"request _rate": 5,
"request _burst": 10,
"report_rejects_every": 10

}

The following table presents the various attributes and the description of the

config.json file.

/etc/rtbrick/apigwd/config.json format
Name Type

access_token_jwk []string
s_urls

pem_urls [Istring

pem_reload_time int

request_rate float

request_burst int

report_rejects_eve int
ry

Description

Allows to specify multiple JWKS remote URLs.

Remote PEM file

Allows to specify multiple PEM remote URLs.
Empty list disables the download.

Allows to specify the time after a new reload is
triggered. O disables the download.

Request rate limit
The allowed requests per second per client.

Is the maximum number of tokens that can be
consumed at once, without respect to the rate.

Report rejects only every x seconds to avoid
massive logging to a GELF endpoint.

1.4.2. Control Daemon (CtrID)

The CtrID service is called rtbrick-ctrld and the CtrID contains some default

parameters.

* To know the installed CtrID version, run the ctrld -version command.

* To display the default settings and the location of configuration files, run the

ctrld -help command.

The CtrID configuration files include:

+ The CtrID configuration file: /etc/rtbrick/ctrld/config.json

* The Role-Based Access Control policy file: /etc/rtbrick/ctrld/policy.json

17

API| References

* The element configuration file for the container: /var/lib/Ixc/<container-
name>/element.config

config.json file

The config.json file can be changed using API. If the file is updated on the file
system, CtrID must be restarted.

Changes to the config.json file will come into effect only after CtrID
e gets restarted. Use the CtrID API to apply in-service configuration

changes at runtime. CtrID updates the config.json file to get the
changes applied through the API persistent.

/etc/rtbrick/ctrld/config.json example

{

"el enent _nane": "el ement _nane",
"pod_name": "pod_nane",
"rbms_enabl e": true,
"rbms_host": "http://198.51. 100. 48",
"rbns_aut hori zati on_header": "Bearer THIS | S NOT A REAL KEY",
"rbns_heartbeat interval": 10,
"l oggi ng": {
"heartbeat interval": 60,
"aliases": {
"default": {
"endpoi nts": [
{
"type": "gelf",
"max_l og_l evel ": 5,
"buf fer_size": 500,
"network": "http",
"address": "http://10.200.32.49: 12201/ gel f"

b s
{
"type": "syslog",
"max_| og_l evel ": 5,
"buffer_size": 30,
"networ k": "udp",
"address": "10.200.32.49:516"
}
]
Ji s
"ztp": {
"endpoi nts": [
{
"type": "gelf",
"max_| og_l evel ": 4,
"buffer_size": 20,
"network": "http",
"address": "http://10.200.32.49: 12201/ gel f"
}
]
}

18

API| References

}
}

"aut h_enabl ed": fal se

}

The following table presents the various attributes and descriptions for CtrlD

config.json file.

/etc/rtbrick/ctrld/config.json format

Name Type
element_name string
pod_name string
rbms_enable bool
rbms_host string

rbms_authorization string
_header

rbms_heartbeat_int int
erval

auth_enabled bool

Description
The name of the element (container).

The pod name. Pod stands for point (zone) of
deployment. A pod can contain a group of
elements.

To enable all RBMS outgoing messages
rbms_host.

RBMS base URL. For example,
http://198.51.100.144:9009

RBMS Authorization Header is set to all calls
which are outgoing to RBMS.

RBMS heartbeat interval in seconds (0 means
deactivated)

To enable the authorization and authentication.

19

http://198.51.100.144:9009

API| References

logging

Log configuration for the host personality of the switch. The
routing instances (elements) can configure the logging in
the RBFS configuration, and that is forwarded, for the
routing instance, to CtrID. The alias (also known as external
log server or Plugin Alias) default acts as the default alias if
a specific alias is not defined.

Name Type Description

alias string Logical name of the endpoints. For
example, ztp for ztp messages.

Each alias can have multiple endpoints. If an alias does not
define any endpoint, the alias is disabled and the message
is not sent and to the default alias.

Name Type Description
type string Type could be syslog or gelf.

max_log_level string MaxLoglLevel that will be
forwarded (default "Notice: 5)"

network string Network get network either tcp,
udp or http. Consider the support
matrix: * gelf: http * syslog: udp,
tcp

buffer_size string BufferSize that will be used for
the fanout, if the buffer is full, the
newer messages that arrive are
thrown away.

address string Address where to send the
message
formatter string The formatter that should be
used. Consider the support
matrix:
+ gelf: none

* syslog: rfc5424

20

API| References

policy.json file

The policy.json file is used to configure role-based access control (RBAC) for CtrID.
This file can be changed using API. If it is changed on the file system, CtrID must be
restarted.

/etc/rtbrick/ctrld/policy.json example

{
"perm ssions": |
{"sub": "systent, "obj": "/*", "act": ".*" },
{"sub": "supervisor", "obj": "/*", "act": ".*" },
{"sub": "operator", "obj": "/*", "act": ".*"},
{"sub": "reader", "obj": "/*", "act": "CET"},
{"sub": "reader", "obj":
"/api/vl/rbfs/el ements/{el enent _nane}/services/{service_nane}/ proxy/ bds/tabl e/ wal k
", "act": ".*"},
{"sub": "reader", "obj":
"/api/vl/rbfs/el ements/{el enent _nane}/servi ces/{service_nane}/ proxy/ bds/ object/get
", "act": ".*"}
]
}

/etc/rtbrick/ctrld/policy.json format
Name Type Description

sub string Subjects means the role which has the permission.
Here RegexMatch Function is used: a regular
expression pattern matcher.

obj string Object is the REST endpoint. Here KeyMatch4
Function is used: KeyMatch4 determines whether
keyl matches the pattern of key2 (similar to
RESTful path), key2 can contain a * and other
patterns:

« "/foo/bar" matches "/foo/"

« "/resource1" matches "/{resource}"

+ "/parent/123/child/123" matches
"/parent/{id}/child/{id}"

+ "/parent/123/child/456" does not match
"/parent/{id}/child/{id}"

21

https://casbin.org/docs/en/function
https://casbin.org/docs/en/function
https://casbin.org/docs/en/function

API| References

Name Type Description

act string And Action is the HTTP Method. Here RegexMatch
Function is used: a regular expression pattern
matcher.

The rules are:

« The user with the role 'system' can access all the rest endpoints and act on
them with all HTTP methods.

* The user with the role 'reader' can access all rest endpoints; but can only call
the HTTP GET method.

+ All authenticated users are allowed to access the proxy endpoint with all HTTP
methods.

element.config file

The element.config file allows to rename the default element name. By default, the
element name and the container name are the same. You can use the file to
rename the default element name so that the element name and the container
name are differentiated.

/var/lib/Ixc/<container-name>/element.config example

/var/lib/Ixc/<container-name>/element.config format
Name Type Description

element_name string Name of the element (By default, it is the
container name).

pod_name string Name of the PoD.

ztp_enabled bool If enabled, the ZTP post process starts when the
switch is moved to the operational state "up". It is
recommended to set this to 'false'. In that case,
only the initial installation or reinstallation triggers
that process.

22

https://casbin.org/docs/en/function
https://casbin.org/docs/en/function

API| References

1.5. Events

RBFS REST APIs play important roles in fetching event logs. Event logs are records
of events that occur in the different functional areas of the RBFS ecosystem. In
RBFS, there are different types of logs. Almost every daemon or module in RBFS
generates a variety of logs. All these logs, which are generated from different
components, can be exported to the log management server, where you can view
and analyze the real-time data.

Log events originate from the RBFS log facility and form a structured log record. If
logging is disabled, then no logs are produced. For more information about RBFS
Logging, see undefined/techdocs/25.2.1.6/loggingug/logging_intro.html[Logging
User Guide].

1.5.1. Alerts

Alerts are event logs that originate from alert configurations. Alerts either report
an issue or notify that an issue has been resolved. Alerts are fully under the control
of a customer. Users can implement alert rules to produce an alert that triggers
automated action in the management system. An alert event is also a business
event when it triggers automated actions.

1.5.2. Business Events

A business event is a record of events that originate from the control daemon,
irrespective of the logging configuration. Business events notify the management
system about significant state changes for triggering automated actions.

Business events are recorded by CtrID and these events are static without any
changes release after release.

APIGwD and CtrID send different GELF and Syslog messages about status changes
or the progress of processes to a GELF or Syslog endpoint.

The following table presents the business event message format:

GELF message format
Name Type Mandatory Description

Default Message Fields

23

API| References

Name

version

host

level

timestamp

short_message
full_message
_daemon

log module

_log_event

Type Mandatory
String Yes

String Yes

int Yes

float Yes

String Yes
String No
String Yes
String Yes

String Yes

Description

The GELF message format version.
Default value: 1.1

The hostname is assigned via DHCP
to the management interface.
Defaults to the management IP
address if no hostname is assigned.

Message Severity. See Table-1.

Unix epoch time in seconds with an
optional fraction of milliseconds.

Problem message.
Detailed problem description.
Name of the daemon.

The module name identifies the
component that created the log
record. It allows segregating log
records into different streams. Each
stream can apply different
processing rules and also be
processed by different
organizational units of the network
operator.

The log event identifies the log
message template in the log
configuration. The log event
simplifies finding where in the
system the log record was created.
The log event should be succinct
and typically conveys a unique
reason code. In addition, the log
event should be a reference that can
be looked up in the product
troubleshooting guide.

24

API| References

Name

_serial number

_rtb_image_version

_origin

config name

_config_sha1

_operational_state

_rid

_user_name
_user_subject
_received_time
_method

_url

Type Mandatory Description

String Yes The serial number of the switch. This
allows tracking hardware
replacements, even if the element
name remains the same. Empty if

not available.

String No ONL Image Version that is installed
on the switch that reports this
message.

String No host or container, defines the origin

of a message. This is only set for
events that are ambiguous.

ZTP Message Fields

String No Exposes the loaded configuration
name. Only set when a configuration
file was processed or an attempt to
process the file failed (e.g., 404 Not
Found response from the HTTP
server while attempting to load the
configuration)

String No Exposes the SHA1 checksum of the
loaded configuration. Only set when
the HTTP server returns a
configuration.

String No Exposes the operational state of the
element.

Request Message Fields

String No Request ID, either X-Request-ID or
new generated

String No User name out of the access token

String No User subject out of the access token

String No Time when the requested arrived

String No HTTP method

String No HTTP url

25

API| References

Name
proto

_remote_ip

_service_name

_service_operationa
|_state

_service_startup_ti

me

_service_down_flap_
time

_service_down_flap_
counter

_service_restarted

_service_scope

Type Mandatory Description
String No HTTP protocol
String No HTTP remote ip address

Service State Message Fields

String No Service name

String No Operational Service

Numb No Service startup time in unix epoch
er time, the number of seconds

elapsed since January 1, 1970 UTC.

Numb No Last down flap time in unix epoch
er time, the number of seconds
elapsed since January 1, 1970 UTC.

Numb No Last down flap time in unix epoch
er time, the number of seconds
elapsed since January 1, 1970 UTC.

String No Restart is set to true if
service_startup_time was changed.

String No Either "host" or "container" indicates
if the service is running in the host
or inside the container.

Level Descriptions as in RFC 5424

Level Name

Comment

0 Emergency System is unusable

1 Alert Action must be taken immediately
2 Critical Critical conditions

3 Error Error conditions

4 Warning Warning conditions

5 Notice Normal but significant condition

6 Informational Informational messages

7 Debug Debug-level messages

26

API| References

GELF sample message

{

" _config_nanme": "ctrld",

"_config_shal": "fleO6ef 1e53becde6f 8baf 2b2f af e7dc9c36f 6f 0",

"_daenon": "ctrld",

" _elenent _nane": "leaf01",

" log_event": "ZTPOO1l1l",

"_log_modul e": "ztp",

"_serial _number”: "591654XK1902037",

"host": "leaf 01",

"l evel": 6,

"short _message": "ztp ctrld config set",

"timestanp”: 1588382356. 000511,

"version": "1.1"

}
Event Types
Instan severit log m log event log description
ce y odule config
ztp Notice ztp ZTPOO11I ctrld ztp ctrld config set
ztp Warn ztp ZTPOO12W ctrld ztp ctrld config not provided
ztp Alert ztp ZTPOO13E ctrld ztp ctrld config not set
ztp Notice ztp ZTP0021I ctrld ztp startup config set
ztp Warn ztp ZTP0022W ctrld ztp startup config not provided
ztp Alert ztp ZTPOO23E ctrld ztp startup config not set
ztp Notice ztp ZTPOO041I ctrld ztp ctrld rbac config set
ztp Warn ztp ZTP0042W ctrld ztp ctrld rbac config not
provided
ztp Alert ztp ZTPOO043E ctrld ztp ctrld rbac config not set
ztp Notice ztp ZTPOO51I ctrld ztp tls config set
ztp Warn ztp ZTP0OO52W ctrld ztp tls config not provided
ztp Alert ztp ZTPOOS53E ctrld ztp tls config not set
ztp Notice ztp ZTPOO061I ctrld ztp accessjwks config set
ztp Warn ztp ZTPO062W ctrld ztp accessjwks config not
provided

ztp Alert ztp ZTPOO63E ctrld ztp accessjwks config not set
ztp Notice ztp ZTPOO71I ctrld ztp apigwd config set

27

API| References

ztp
ztp
ztp
securit
y
securit
y
securit
y
securit
y
securit
y

securit
y

eleme
nt

eleme
nt

eleme
nt

eleme
nt

eleme
nt

eleme
nt

eleme
nt

Warn
Alert
Notice

Warn

Warn

Warn

Warn

Warn

Warn

Notice

Notice

Notice

Error

Notice

Notice

Notice

ztp
ztp
ztp
securit
y
securit
y
securit
y
securit
y
securit
y

securit
y

eleme
nt

eleme
nt

eleme
nt

eleme
nt

eleme
nt

eleme
nt

eleme
nt

ZTPO072W
ZTPOO73E
ZTP1000I
SECO001W

SECO002W

SECO003W

SEC0004W

SECO005W

SECO006W

HTBOO0O1

STA0001

STA0021

STA0022

STA0023

STA0003

STA0031

ctrid
ctrid
ctrid
ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ctrid

ztp apigwd config not provided
ztp apigwd config not set
ztp process finished

access forbidden

access invalid rtb token

access invalid access token

not able to download remote
keys

not able to download remote
pem

request rate limited (this
message is also rate limited,
and can be controlled in the
apiwd config)

heartbeat with the
operational_state
element state change
service up

service unexpected down
service expected down

ready for service

module new (one of the
modules is newly discovered
e.g. fan, SFP ..., this event will be
fired after every reboot of ctrid)

28

API| References

eleme Notice eleme STA0032 ctrld module parameter changed

nt nt (one of the parameters of the
module got changed e.g. fan,
SFP ...)

eleme Notice eleme STA0033 ctrld module removed (one of the

nt nt modules got removed e.g. fan,
SFP ...

ALL Notice eleme STA0040 all messages could have been

nt dropped
prome ? ? ? eleme messages generated by
theus nt prometheus alerts

1.6. Appendix: Use case Scenario and Examples for
RBFS REST APIs

1.6.1. CtrID API: Use Cases and Examples

A single CtrID instance can serve multiple RBFS containers. Each container forms a
network element and has a unique name which is the 'element name'.

All API calls (requests) to an RBFS container contain the element name in the URL
path.

BNG is used as the element name in the following examples.
NOTE: 70.0.0.7 is used as the management IP address in the
following examples.

Rebooting a Switch
This example shows how to reboot the switch.
Rebooting a switch is an example of an asynchronous operation.

The API call returns the acknowledgment immediately that the reboot request has
been accepted (HTTP Status Code 202).

The following list shows the HTTP request to reboot switch 10.0.0.1. The URL
contains no element name because the entire switch will be rebooted.

29

API| References

POST /api/vl/ctrld/system _reboot HTTP/ 1.1
Host: 10.0.0. 1: 19091

Triggering a Software Upgrade

A software upgrade can be performed by executing the Zero-Touch Provisioning
(ZTP) process again. The switch will be rebooted in Open Network Install
Environment (ONIE) update mode and allow ONIE to discover the OS installer
image and startup configuration files from the ZTP server.

Rebooting a switch is an example of asynchronous operation.

The API call returns a response immediately that the reboot request has been
accepted (HTTP Status Code 202).

The following example shows the HTTP request to reboot switch 10.0.0.1. The URL
contains no element name because the entire switch will be rebooted.

POST /api/vl/ctrld/system _update HTTP/ 1.1
Host: 10.0.0. 1: 19091

Using the Proxy Endpoint

The CtrID proxy endpoint forwards API calls to the daemons hosting the API in the
RBFS container. Three daemons host publicly available APIs:

* opsd, the operational state daemon, hosts the Operational State API.

* restconfd, the RESTCONF daemon, hosts the RESTCONF API.

* Prometheus hosts the Prometheus API.

0 All examples in the following sections use the CtrID proxy
endpoint.

The following table summarizes the proxy endpoint paths for the daemons: opsd,
restconfd, and Prometheus and an element named BNG.

Daemon Path

Operational State Daemon (opsd) /api/v1/rbfs/elements/cnbg-
1/services/opsd/proxy

30

API| References

Daemon Path

RESTCONF Daemon (restcondf) /api/v1/rbfs/elements/cnbg-
1/services/restconfd/proxy

Prometheus /api/v1/rbfs/elements/cnbg-
1/services/prometheus/proxy

1.6.2. RESTCONF API: Use Cases and Examples

Reading the Current Configuration

The following request returns the complete switch configuration.

CET /api/vl/rbfs/el enents/ BNG services/restconfd/ proxy/restconf/data HTTP/ 1.1
Host: 10.0.0.1:19091

Reading the Time-series Settings

The RESTCONF Protocol RFC describes a comprehensive query syntax, which
allows retrieving certain parts of the configuration.

The following API call retrieves all the time-series settings.

CET /api/vl/rbfs/el enents/ BNG services/restconfd/ proxy/restconf/data/rtbrick-
config:tine-series HITP/ 1.1
Host: 10.0.0.1:19091

{
"rtbrick-config:tinme-series": {
"metric": |
{
"name": "subscriber_sessions",
"tabl e-nanme": "l ocal . access. subscri ber. count",
"bds-type": "object-netric",
"promet heus-type": "gauge",
"description": "Established subscriber sessions”,
"attribute": [
{
"attribute-nane": "ipoe_established",
"l abel ": [
{
"| abel - key": "access_type",
"| abel -val ue": "ipoe",
"| abel -type": "static"
b
{
"| abel - key": "ifp_name",

31

https://www.rfc-editor.org/rfc/rfc8040.html

API| References

"| abel -val ue": "ifp_nane",
"l abel -type": "dynam c"
}
]
}
]
s
{
"name": "total _cpu_util _percent”,
"tabl e-nane": "gl obal . chassis_0O. resource. cpu_usage",
"bds-type": "object-netric",
"pronet heus-type": "gauge",
"description": "Total CPU utilization in percent"”,
"attribute": [
{
"attribute-name": "total _cpu"”,
"label ": [
{
"| abel - key": "cpu",
"l abel -val ue": "cpu_id",
"l abel -type": "dynam c"
}
]
}
]
b
{
"nanme": "total _nmenory free_ kil obyte",
"t abl e-nane": "gl obal . chassis_0.resource. nem usage",
"bds-type": "object-netric",
"pronet heus-type": "gauge",
"description": "Total free RAM nenory in kilo bytes",
"attribute": [
{
"attribute-nane": "free_nment,
"label ": [
{
"| abel - key": "menory",
"l abel -val ue": "nmem.d",
"l abel -type": "dynam c"
}
]
}
]
H
{
"nanme": "total _nmenory_used_kil obyte",
"tabl e-nane": "gl obal . chassis_0.resource. nem usage",
"bds-type": "object-netric",
"pronet heus-type": "gauge",
"description": "Total used RAM nenory in kilo bytes",
"attribute": [
{
"attribute-nane": "used_nent,
"l abel ": [
{
"| abel - key": "menory",
"l abel -val ue": "mem. d",
"| abel -type": "dynam c"
}
]

32

API| References

RESTCONF also allows filtering for a specific time series.

CGET /api/vl/rbfs/el enents/ BNG services/restconfd/ proxy/restconf/data/rtbrick-
config:tine-series/netric=subscriber_sessions HITP/ 1.1
Host: 10.0.0. 1: 19091

{
"rtbrick-config:netric": [
{
"nane": "subscriber_ sessions",
"tabl e-nanme": "l ocal . access. subscri ber. count",
"bds-type": "object-netric",
"promnet heus-type": "gauge",
"description": "Established subscriber sessions",
"attribute": [
{
"attribute-nane": "ipoe_established",
"l abel ": [
{
"| abel - key": "access_type",
"| abel -val ue": "ipoe",
"| abel -type": "static"
b
{
"| abel - key": "ifp_name",
"| abel -val ue": "ifp_nanme",
"l abel -type": "dynam c"
}
1
}
]
}
]
}

In addition, RESTCONF allows querying the key values. The following API call selects
the names of the configured time-series metrics.

GET /api/vl/rbfs/el ements/BNG services/restconfd/proxy/restconf/datal/rtbrick-
config:tine-series/netric=/name HTTP/ 1.1
Host: 10.0.0.1:19091

"rtbrick-config: name": [
"subscri ber _sessions",

33

API| References

"total _cpu_util_percent",
"total _nmenory_free_kil obyte",
"total _nmenory_used_ki |l obyte"

Adding a New Time-series

The RESTCONF API also allows replacing and adding new configurations to an
existing configuration. The data is exchanged in JSON format.

0 The Content-Type header must be set to application/yang-
data+json.

YANG is a modeling language that is used to describe the configurations. The
RESTCONF Open API definition is generated from the YANG models and contains a
reference to the respective YANG model.

The following API request adds a new default_bgp_prefixes_count time-series to
the RBFS configuration.

PUT /api/vl/rbfs/el ements/BNG servi ces/restconfd/ proxy/restconf/datal/rtbrick-
config:tine-series/netric=default_bgp_prefixes_count HITP/ 1.1

Host: 10.0.0. 1: 19091

Cont ent - Type: applicati on/ yang- dat a+j son

Cont ent - Lengt h: 4315

{
"rtbrick-config:netric": [
{
"name": "default_bgp_prefixes_count",
"tabl e-name": "default.bgp. peer"”,
"bds-type": "object-netric",
"promnet heus-type": "gauge",
"description": "BGP peerings default instance",
"attribute": [
{
"attribute-nanme": "ipv4_unicast_update_rcvd_cnt",
"l abel ": [
{
"l abel - key": "afi",
"| abel -val ue": "ipv4",
"| abel -type": "static"
I
{
"| abel - key": "direction",
"| abel -val ue": "in",
"l abel -type": "static"
b
{
"| abel - key": "peer",
"| abel -val ue": "peer_ipv4_address"”,

34

API| References

b
{

"attri bute-nane":

"| abel ":

{

H
{

b
{

H
{

"attribute-name":

"| abel ":

{

b
{

b
{

H
{

"attribute-nanme":

"l abel -type":

"| abel - key":
"| abel - val ue":
"| abel -type":

[

"| abel - key":
"l abel - val ue":
"| abel -type":

"| abel - key":
"| abel - val ue":
"l abel -type":

"| abel - key":
"| abel - val ue":
"| abel -type":

"| abel - key":
"l abel - val ue":
"| abel -type":

"dynam c"

safi",
"uni cast",
"static"

"i pv4_uni cast _update_sent_cnt",

afi ",
"ipva",
"static"

"direction",

out",
"static"

peer",
"peer _i pv4_address”,
"dynam c"

safi ",
"uni cast",
"static"

"i pv6_uni cast _update_rcvd_cnt",

[
"| abel - key": "afi",
"| abel -val ue": "ipv6",
"| abel -type": "static"

"| abel - key":
"| abel - val ue":
"| abel -type":

"l abel - key":
"| abel - val ue":
"| abel -type":

"| abel - key":
"| abel - val ue":
"| abel -type":

"direction",

lli n" ,
"static"

"peer",

"peer _i pv4_address",
"dynam c"

"safi",

"uni cast",
"static"

"i pv6_uni cast _update_sent_cnt",

35

API| References

"l abel ": [
{
"l abel - key": "afi",
"| abel -val ue": "ipv6",
"l abel -type": "static"
b
{
"| abel - key": "direction",
"| abel -val ue": "out",
"| abel -type": "static"
b
{
"| abel - key": "peer",
"| abel -val ue": "peer_ipv4_address"”,
"| abel -type": "dynam c"
b
{
"l abel - key": "safi",
"| abel -val ue": "unicast",
"l abel -type": "static"
}

The APl returns a 201 Created response if a new metric was added and returns 204
No Content if an existing metric got updated.

Removing a Time-series

The following APl request removes the default_bgp_prefixes_count time series
from the switch configuration.

DELETE / api/v1/rbfs/el ement s/ BNG servi ces/restconfd/ proxy/restconf/data/rtbrick-
config:time-series/netric=defaul t_bgp_prefixes_count HITP/ 1.1
Host: 10.0.0.1:19091

The API returns a 204 No Content response if the delete operation succeeded. Any
API call to remove a configuration that does not exist results in a 409 Conflict error
response.

Example Response:

{
"ietf-restconf:errors": {
“error": {
“error-type": "application",
"error-tag": "data-m ssing",

36

API| References

"error-severity": "error",
"“error-message": "Data does not exist; cannot delete resource”

1.6.3. Operational State API: Use Cases and Examples

The operational state APl provides access to operational state data, including
routing protocols, subscriber, and system state information. The operational state
is a runtime information and will be reset after each reboot.

6 The operational state API is accessed through the CtrID proxy

endpoint.
@ Use Prometheus for operational state monitoring and metric
- sampling.

Querying Subscriber Sessions

The following example shows how to read up to five (limit=5) active subscriber
sessions on port ifp-0/0/0 (ifp_name=ifp-0/0/0).

CET /api/vl/rbfs/el enents/ BNG services/ opsd/ proxy/ subscri bers?i f p_nane=i f p-
0/0/0& imt=5 HITP/ 1.1
Host: 10.0.0.1:19091

The API call uses the CtrID proxy endpoint to invoke the Operational State API, the
element name is BNG and the service name is opsd.

The following example shows five IPOE subscriber sessions.

"subscriber_id": 216454257090494480,
"subscriber _id_str": "216454257090494480",
"subscri ber _state": "ESTABLI SHED',
"subscriber_user_nane": "02:00: 00: 00: 00: 06@ poe",

"access_type": "Il PoE",
"accounting_session_id": "216454257090494480: 1695654885",
"ifp_name": "ifp-0/0/0",

"outer_vlan": 128,

"inner_vlan": 6,

"client_mac": "02:00:00:00:00: 06",

"agent _renote_id": "DEU RTBRI CK. 6",

"agent _circuit_id": "0.0.0.0/0.0.0.0 eth 0:6"

37

API| References

{
"subscriber_id": 216454257090494481,
"subscriber_id_str": "216454257090494481",
"subscriber_state": "ESTABLI SHED',
"subscriber_user_nane": "02:00: 00: 00: 00: 07@ poe",
"access_type": "Il PoE",
"accounting_session_id": "216454257090494481: 1695654885",
"ifp_name": "ifp-0/0/0",
"outer_vlan": 128,
"inner_vlan": 7,
"client_mac": "02:00:00:00:00: 07",
"agent _renote_id": "DEU. RTBRICK. 7",
"agent _circuit_id": "0.0.0.0/0.0.0.0 eth 0:7"

Ji e

{
"subscriber_id": 216454257090494482,
"subscriber_id_str": "216454257090494482",
"subscriber_state": "ESTABLI SHED',
"subscriber_user_nane": "02:00: 00: 00: 00: 08@ poe",
"access_type": "Il PoE",
"accounting_session_id": "216454257090494482: 1695654885",
"ifp_name": "ifp-0/0/0",
"outer_vlan": 128,
"inner_vlan": 8,
"client_mac": "02:00:00:00:00: 08",
"agent _renote_id": "DEU RTBRI CK. 8",
"agent _circuit_id": "0.0.0.0/0.0.0.0 eth 0:8"

}

{
"subscriber_id": 216454257090494483,
"subscriber_id_str": "216454257090494483",
"subscriber_state": "ESTABLI SHED',
"subscriber_user_nane": "02:00: 00: 00: 00: 09@ poe",
"access_type": "I PoE",
"accounting_session_id": "216454257090494483: 1695654885",
"ifp_name": "ifp-0/0/0",
"outer_vlan": 128,
"inner_vlan": 9,
"client_mac": "02:00:00:00: 00: 09",
"agent _renote_id": "DEU RTBRI CK. 9",
"agent _circuit_id": "0.0.0.0/0.0.0.0 eth 0:9"

3,

{
"subscriber_id": 216454257090494484,
"subscriber_id str": "216454257090494484",
"subscriber_state": "ESTABLI SHED',
"subscri ber_user_nane": "02:00: 00: 00: 00: 0Oa@ poe",
"access_type": "I PoE",
"accounting_session_id": "216454257090494484: 1695654885",
"“ifp_name": "ifp-0/0/0",
"outer_vlan": 128,
"“inner_vlan": 10,
"client_nmac": "02:00:00: 00:00: 0a",
"agent _renote_id": "DEU. RTBRI CK. 10",
"agent _circuit_id": "0.0.0.0/0.0.0.0 eth 0:10"

}

Each subscriber session has a unique subscriber ID and the subscriber ID is

38

API| References

unsigned 64-bit integer.

The subscriber_id holds the numeric subscriber ID value, while subscriber_id_str
contains a string representation of the subscriber ID.

Some tools and programming libraries comply |-/SON standard.
This standard defines numeric values as double-precision floating-
0 point numbers. As a result, subscriber ID values will be rounded
and may confuse. It is recommended to read the subscriber ID
from the subscriber_id_str in such environments.

Terminating a Subscriber Session

The following API call terminates the subscriber session for the subscriber with the
subscriber ID: 216454257090494484.

DELETE

[api /vl/rbfs/el ements/ BNG servi ces/ opsd/ proxy/ subscri bers/216454257090494484
HTTP/ 1.1

Host: 10.0.0. 1: 19091

The switch returns a 202 Accepted status code to acknowledge that the session is
going to be terminated.

1.6.4. Prometheus: Use Cases and Examples

Accessing the Federation Endpoint

The Prometheus federation endpoint returns all metrics collected by Prometheus
in the Prometheus Exposition Format.

GET

[api /v1/rbfs/el ement s/ BNG servi ces/ pronet heus/ proxy/ f eder at e?mat ch%BY% D=%Bj ob%3D
%R2bds%22%/D HTTP/ 1. 1

Host: 10.0.0.1:19091

The match condition is required to select all BDS metrics that is
0 metrics collected from brick daemons and the brick data store
(BDS).

39

https://www.rfc-editor.org/rfc/rfc7493.html

API| References

1.7. Related Documentation

/ONIE/

1ZTP/

/SEC/

/RADIUS/

/CTRLD/

/RESTCONF/

/GELF/

The ONIE documentation outlines the DHCP options supported
for image discovery.
https://opencomputeproject.github.io/onie/design-spec/
discovery.html

The undefined/techdocs/25.2.1.6/tools/rbfs-ztp.html[Zero-Touch
Provisioning Guide] outlines the current configuration discovery
process.

The
undefined/techdocs/25.2.1.6/secrngmt/secmgmt_intro.html[Secu
ring the Management Plane Guide] Secure the Management
Plane guide gives a detailed insight on this topic.

The
undefined/techdocs/25.2.1.6/radiusservices/radiusservices_intro.
htmI[RADIUS Services Guide] provides an overview of the
supported RADIUS attributes including a reference to the RFC
that defines the message attribute.

The CTRLD API reference describes all CTRLD REST API endpoints
in detail. To view the CtrID API Reference, navigate to RBFS APIs,
and select CTRLD API Reference from the drop-down list.

The RESTCONF API reference describes all configuration API
endpoints. To view the RESTCONF API Reference, navigate to
RBFS APIs, and select RESTCONF API Reference from the drop-
down list.

The Graylog Extended Log Format (GELF) is a log format, this
document outlines the fundamentals.
To obtain this document, contact your customer support team.

40

https://opencomputeproject.github.io/onie/design-spec/discovery.html
https://opencomputeproject.github.io/onie/design-spec/discovery.html

API| References

2. RBFS APIs

<link rel ="styl esheet" type="text/css" href="./_attachnments/swagger-ui.css">
<link rel ="styl esheet" type="text/css" href="./_attachments/rtbrick-swagger.css">
<di v id="swagger - ui "></di v>
<script src="./_attachment s/ swagger-ui-bundl e.js"></script>
<script src="./_attachment s/ swagger-ui - st andal one-preset.js"></script>
<scri pt>
wi ndow. onl oad = function () {
const DisableTryltQutPlugin = function() {

return {
statePl ugins: {
spec: {

wrapSel ectors: {
allowTryltQutFor: () => () => fal se

/1 Begin Swagger U call region
const ui = Swagger U Bundl e({

urls: [

{ "url™: ™./ _attachnents/rbfs/openapi _ctrld.yam ", "nane": "CTRLD API
Ref er ence" 1},

{ "url™: "./_attachnents/rbfs/rtbrick-config_restconf_swagger.json",
"nanme": "RESTCONF APl Reference" },

{ "url": "./ _attachnents/rbfs/swagger_opsd.yam ", "nanme": "Operational
State APl Reference" },

{ "url"™: "./_attachnents/rbfs/swagger_bds.yam ", "nane": "BDS API

Ref er ence" 1},

1,

dom.id: '#swagger-ui',

deepLi nki ng: true,

docExpansi on: "none",

presets: [
Swagger Ul Bundl e. presets. api s,
Swagger Ul St andal onePr eset

1,

plugins: [
Swagger Ul Bundl e. pl ugi ns. Downl oadUr | ,
Di sabl eTryl t Qut Pl ugi n

1,

| ayout: "Standal oneLayout"

})
/1 End Swagger Ul call region
Wi ndow. ui = ui

}

</script>

41

	Technical Documentation: API References
	Table of Contents
	1. RBFS API User Guide
	1.1. RBFS REST APIs
	1.1.1. Introduction to RBFS REST APIs
	1.1.2. Understanding RBFS APIs

	1.2. Controller Daemon
	1.2.1. CtrlD Overview
	1.2.2. CtrlD Parameters
	1.2.3. Container Management
	1.2.4. Images Management
	1.2.5. Container and Element Management
	1.2.6. CtrlD API
	1.2.7. Jobs and Callbacks
	1.2.8. Pub-Sub Model
	1.2.9. CtrlD Logs

	1.3. Functions and Use cases of RBFS REST APIs
	1.3.1. CtrlD API
	1.3.2. RESTCONF API
	1.3.3. Operational State API
	1.3.4. Guidelines and Limitations

	1.4. Configure API Gateway and CtrlD Components
	1.4.1. Configure API Gateway Components
	1.4.2. Control Daemon (CtrlD)

	1.5. Events
	1.5.1. Alerts
	1.5.2. Business Events

	1.6. Appendix: Use case Scenario and Examples for RBFS REST APIs
	1.6.1. CtrlD API: Use Cases and Examples
	1.6.2. RESTCONF API: Use Cases and Examples
	1.6.3. Operational State API: Use Cases and Examples
	1.6.4. Prometheus: Use Cases and Examples

	1.7. Related Documentation

	2. RBFS APIs

