
RBMS User Guides
Version 25.1.1.1, 18 June 2025

Table of Contents
1. RBMS Overview . 1

1.1. System Architecture . 1

2. Managing Inventory . 5

2.1. Introduction . 5

2.2. Data model . 6

2.2.1. Element, element role and platform. 6

2.2.2. Image . 8

2.2.3. Element Group . 8

2.2.4. Facility and racks . 9

2.3. Managing Pods. 9

2.3.1. Filtering Pod list by Pod name . 9

2.3.2. Creating Pods . 9

2.3.3. Modifying Pod settings . 10

2.3.4. Removing Pods. 11

2.3.5. Viewing Pod location . 12

2.3.6. Describing Pod racks . 13

2.3.7. Adding element to Pod . 13

2.3.8. Listing elements of a Pod . 14

2.3.9. Viewing Link State Graph . 15

2.3.10. Viewing Pod Topology . 16

2.4. Managing Elements . 17

2.4.1. Assigning roles to elements . 18

2.5. Viewing Physical Interfaces . 18

2.6. Managing Facilities . 19

2.7. Viewing list of facilities . 19

2.7.1. Creating a Facility . 19

2.8. Managing Racks . 20

2.8.1. Creating a Rack. 20

2.9. Managing DNS Zones . 21

2.9.1. Creating a DNS Zone . 21

2.10. Inventory Administration . 22

2.10.1. Managing element platforms. 22

2.10.2. Managing Element Roles . 23

2.10.3. Managing Templates . 23

3. Managing Software Images . 25

3.1. Viewing all registered images . 25

3.1.1. Viewing image details . 26

3.1.2. Updating image metadata . 27

3.2. Image Lifecycle Management . 28

4. Managing Logs . 30

4.1. Introduction . 30

4.2. Viewing log events . 31

4.3. Filtering log events. 31

5. Metric Management . 33

5.1. Overview . 33

5.2. Working with metrics . 34

5.2.1. Viewing metrics . 34

5.2.2. Enabling a metric . 36

5.2.3. Disabling a metric . 37

5.2.4. Viewing element dashboards. 37

5.3. Managing metrics . 38

5.3.1. Adding a new metric . 38

5.3.2. Removing a metric . 44

5.4. Managing dashboards . 44

5.4.1. Registering Dashboards . 44

5.4.2. Support for other visualization platforms . 53

6. Metric Sampling and Monitoring . 54

6.1. Metric sampling Overview . 54

6.1.1. BDS as Single Point of Truth. 54

6.1.2. Metric Types . 55

6.1.3. Metric Labels. 55

6.1.4. Sampling Rate and Retention Period . 56

6.1.5. Metric Monitoring . 56

6.2. Temperature Monitoring . 56

6.2.1. Sampling Temperature Sensors . 57

6.2.2. Querying the Chassis Temperature . 58

6.2.3. Monitoring Temperature Values . 59

6.3. CPU Utilization . 62

6.3.1. Sampling CPU Counters . 63

6.3.2. Computing Total CPU Utilization From Counter Samples 65

6.3.3. Sampling Process CPU Counters . 67

6.3.4. Computing Process CPU Utilization From Counter Samples 68

6.4. PPPoE Session Count . 69

6.5. Count of Received IPv4 Unicast Prefixes . 72

6.6. Metric Management . 73

6.7. Grafana Dashboards . 74

6.8. Summary. 75

6.9. References . 75

7. Administering RBMS . 77

7.1. Administration . 77

7.1.1. Managing Webhooks . 77

7.1.2. Managing Users . 83

7.1.3. Managing Roles . 84

7.1.4. Creating Roles. 85

7.1.5. Managing Access Keys. 85

7.1.6. Creating Access Keys . 86

7.1.7. Scopes . 89

7.2. Managing Jobs . 91

7.2.1. Viewing job list . 92

7.2.2. Viewing job task list . 92

7.2.3. Viewing task flow . 93

7.2.4. Viewing task details . 94

7.2.5. Canceling a Job . 95

7.2.6. Removing a Job. 96

7.2.7. Configuring Job Settings . 96

8. RBMS Configuration Store . 98

8.1. Creating a new candidate configuration . 98

8.1.1. Uploading a candidate configuration . 98

8.1.2. Generating a candidate configuration . 102

8.2. Review configuration history . 111

9. RBMS Template Engine . 114

9.1. Template Folder structure . 114

9.2. Template config . 114

9.3. GO Lang Template Engine . 116

9.4. Example. 116

9.5. TestKit . 119

10. Auto-DNS Provisioning . 120

10.1. DNS Introduction. 120

10.1.1. Supported Platforms. 120

10.2. DNS Overview . 120

10.2.1. Terms and Definitions. 121

10.3. DNS Record Management . 123

10.3.1. DNS Naming Convention . 123

10.3.2. Sample Fabric DNS Naming Convention . 130

1. RBMS Overview
RtBrick’s Management System (RBMS) provides network level workflows such as
image lifecycle management, network upgrades, event and log Management.
RBMS actions are available through REST APIs making them easy to integrate into
existing Operations Support Systems (OSS) systems. RBMS provides a single point
of interaction for operations staff – from provisioning and management to
monitoring and debugging.

The RBMS user interface provides the following capabilities:

• Image: Manage software images

• Inventory: Manage network elements

• Metrics: Manage the metrics sampled from network devices

• Jobs: Review the currently active or scheduled jobs

• Logs: View logs messages from the switches

• Administration: Manage users, roles, and access tokens.

1.1. System Architecture

RBMS follows a service-oriented architecture and defines three categories of
services:

1. Platform Services

2. Applications

3. Connectors

Technical Documentation: RBMS User Guides

1

Platform Services provide the foundation for all network management functions
available in RBMS. The platform services include the resource inventory, job
scheduler, authentication and authorization and event subscription.

Applications provide a specific network management function. Applications use the
platform services and also services provided by other applications to implement
network management functions. For example, the topology application visualizes
the link-state graph of a fabric.

Connectors interface RBMS with open-source solutions like log management
systems or time series databases.

All services provide a REST API to interface with the service. The RBMS User
Interface uses these REST APIs. Consequently, all UI actions can be automated
through REST API calls. Services can contribute views to the RBMS UI to make the
provided service functions accessible from the RBMS UI.

The figure below shows a real-world RBMS deployment.

Technical Documentation: RBMS User Guides

2

OSS-IT and RBMS UI manage the switches installed in the network. This includes to
inspect the state of a switch but also to manage the switch configurations or to
install a new software image.

OSS-IT can also subscribe for domain events. A domain event reports when a switch
inventory record has changed.

RBMS maintains the switch configurations and publishes the switch startup
configuration on the ZTP service. This configuration also includes the software
image to be installed on the switch.

ONIE, the open network install environment reads the installer image information
from the ZTP service and installs RBFS. Next CTRLD reads the startup configuration
from the ZTP service.

RBFS reports log messages to Graylog, an open-source enterprise log
management. Graylog uses elasticsearch to store log messages. RBMS is
connected to elasticsearch to query the logs and display them in RBMS.

Prometheus, an open-source monitoring system with built-in timeseries database,
runs on the switch to sample metrics and to monitor metrics for alert conditions. A
centralized Prometheus federates the metrics from the switches. RBMS is

Technical Documentation: RBMS User Guides

3

connected to this Prometheus instance to show the metric values in the RBMS user
interfaces.

Grafana, an open-source visualization platform, provides dashboards to visualized
the time series data. The RBMS UI provides quick-access to the dashboards and
embedds dashboard panels in RBMS views.

Authentication and authorization is either delegated to an OpenID/Connect and
OAuth2-compatible authorization service or done by the built-in user repository
shipped with RBMS.

Technical Documentation: RBMS User Guides

4

2. Managing Inventory

2.1. Introduction

The resource inventory stores information about the elements installed in the
network. The resource inventory provides a REST API to maintain the resource
inventory records. In addition, the resource inventory contributes views to the
RBMS UI. The resource inventory UI only uses the REST API to maintain the
resource inventory records. Typcially three consumers of the resource REST API
exists as illustrated below:

1. RBFS uses the resource inventory API to register itself in RBMS. RBFS reports
the running services, physical interfaces, discovered neighbors, logical
interfaces, hardware module information, information about the installed
software image and the current configuration, including configuration changes,
to RBMS.

2. The RBMS UI uses the resource inventory API to enable an operator to view
and manage resource inventory records.

3. The OSS IT, or any other customer IT system can use the REST API to manage
resource inventory records. It is also feasible to subscribe for events to get
notified when a resource inventory record changes.

Technical Documentation: RBMS User Guides

5

2.2. Data model

The resource inventory data is also the basis for the network management
applications provided by RBMS. The data model is generalized allowing you to
define additional roles to store custom elements, for example,to simplify
automation of network management operations by storing the required data in
the same database.

The main entities of the resource inventory and their relationships are shown
below:

2.2.1. Element, element role and platform

The element forms the cornerstone of the resource inventory. Every element has a
certain role, like a spine or a leaf switch of a fabric for example. The element role
describes the function of an element in the network.

The resource inventory stores the following information per element:

Technical Documentation: RBMS User Guides

6

• General settings including the element role, element name, an optional
element alias, the operational and administrative state, the serial number, the
hardware platform, an optional asset ID and management interfaces like SSH
or REST API access.

• List of physical interfaces and their operational state

• List of logical interfaces and their operational state

• Information about the installed software image

• Installed services including their current state

• Element hardware modules

• Element configurations including a configuration history

• Environments containing custom data used to generate the element
configuration.

The platform provides information about the hardware platform vendor, model
and chipset. This information is needed to discover the software images that can
be installed on this element.

The element has one of the following administrative states:

Administrative State Description

NEW A new element that has not yet been
installed or enabled in the network.

ACTIVE An element that has been installed in
the network and is supposed to be up
and running.

RETIRED An element that is about to being
removed from the network.

The following operational states exist:

Operational State Description

DOWN The element is down.

UP The element is up.

Technical Documentation: RBMS User Guides

7

Operational State Description

DETACHED RBMS did not receive heartbeats from
the element and declares it as detached
from RBMS.

MAINTENANCE The element is currently in
maintenance.

2.2.2. Image

The image provides information about the images being eligible for deployment.
RBMS supports prupose-build image that can be installed on certain element roles
and platforms only. RBMS includes a image lifecycle management with the
following states:

State Description

NEW A new image that is not yet eligible for
deployment.

CANDIDATE A candidate image to become the next
release. The image is eligible for
deployment but not installed by default.

RELEASE The image that get installed by default.

SUPERSEDED A former release image that has been
replaced by another release image.

REVOKED An image that has been revoked and
must not be installed any more. A
revoked image retains in the intenvory
for the sake of documentation.

2.2.3. Element Group

Each element belongs to an element group. Elements of the same element group
form a logical unit inside the network. For example, a pod of an access network is
modelled as element group.

Technical Documentation: RBMS User Guides

8

2.2.4. Facility and racks

The facility describes a network facility including it’s physical location. Moreover
the racks installed at a facility can be specified. This also includes the locations of
elements in a rack.

2.3. Managing Pods

2.3.1. Filtering Pod list by Pod name

To filter Pod list by Pod name

1. Click the Inventory tab. The Pods page appears by default.

2. In the Filter text box, specify the filter criteria and then click Filter. The Pods
that match the filter criteria appear.

2.3.2. Creating Pods

To create a Pod

1. Click the Inventory tab. The list of Pods appears by default.

2. In the Pods page, click the Add pod.

Technical Documentation: RBMS User Guides

9

3. In the Pod Name field, specify the name of the Pod.

4. In the Description field, specify a brief description for the Pod.

5. In the Tags field (optional), specify the tags that can be used to categorise the
Pod.

6. Click Add Pod.

2.3.3. Modifying Pod settings

To modify the Pod settings

1. Click the Inventory tab. The list of Pods appear by default.

2. In the Pods group box, click the Pod that you want to modify. The Pod Settings
page appears.

Technical Documentation: RBMS User Guides

10

3. Make the necessary updates and click Save settings.

2.3.4. Removing Pods

To remove a Pod

1. Click the Inventory tab. The list of Pods appear.

2. In the Pods group box, click the Pod that you want to remove. The Pod
Settings page appears.

Technical Documentation: RBMS User Guides

11

2.3.5. Viewing Pod location

To view the facility where a Pod is installed

1. Click the Inventory tab. The list of Pods appear.

2. In the Pods group box, click the Pod whose facility you want to view.

3. Click Pod location in the left navigation pane. The Pod Facility page appears.

Technical Documentation: RBMS User Guides

12

2.3.6. Describing Pod racks

To describe the Pod racks

1. Click the Inventory tab. The list of Pods appear.

2. In the Pods group box, click the Pod that you want to modify. The Pod Settings
page appears.

3. Specify the description for Pod rack.

2.3.7. Adding element to Pod

To add element to Pod

1. Click the Inventory tab. The list of Pods appear.

2. In the Pods group box, click the Pod that you want to modify. The Pod Settings
page appears.

3. Click Elements from the left navigation pane. The Elements page appears.

4. Click Add element.

Technical Documentation: RBMS User Guides

13

2.3.8. Listing elements of a Pod

To view the list of element in Pod

1. Click the Inventory tab. The list of Pods appear.

2. In the Pods group box, click the Pod that you want to modify. The Pod Settings
page appears.

3. Click Elements from the left navigation pane. The Elements page appears and
the list of elements in the selected Pod appear.

Technical Documentation: RBMS User Guides

14

2.3.9. Viewing Link State Graph

To view the link state graph of Pod

1. Click the Inventory tab. The list of Pods appear.

2. In the Pods group box, click the Pod that you want to view. The Pod Settings
page appears.

3. Click Link State Graph in the left navigation pane. The Link State Graph page
appears.

4. On the Link State Graph page, select a network element to display link
information.

5. Click Details to view the detailed information of network elements.

Technical Documentation: RBMS User Guides

15

2.3.10. Viewing Pod Topology

The topology view provides the following functionalities:

• Visualizes the Pod link-state graph

• Visualizes connected Pods

• Provides quick access to most relevant information

◦ Alerts

◦ Events

◦ Established links

To view the Pod topology

1. Click the Inventory tab. The list of Pods appear.

2. In the Pods group box, click the Pod that you want to view. The Pod Settings
page appears.

3. Click Link State Graph in the left navigation pane. The Link State Graph page
appears.

4. Click the view all pods link that is displayed along the bottom of the page. The
Topology page appears.

Technical Documentation: RBMS User Guides

16

The Topology page displays the overview of the Pod topology in a graphical
interface along with a table that shows the list of Pods deployed in the network.

2.4. Managing Elements

To view the list of all registered elements

1. Click the Inventory tab, and then click Elements in the left navigation pane.
The list of registered elements appear.

Technical Documentation: RBMS User Guides

17

2.4.1. Assigning roles to elements

1. Click the Inventory tab, and then click Elements in the left navigation pane.
The list of registered elements appear.

2. Click the name of the element that you want view.

3. In the Element Role box, select the role you want to use. The following roles
are available:

◦ Access Leaf- Access leaf fabric switch

◦ Border Leaf - Border leaf fabric switch

◦ Spine - Spine fabric switch

2.5. Viewing Physical Interfaces

The physical interface summary shows the information of a physical interface and
its logical interfaces. The view might be augmented with telemetry data (for
example, current interface utilization, log messages).

To view the list of physical interfaces

1. Click the Inventory tab.

2. In the left navigation pane, click Interfaces. The Physical Interfaces page
appears.

Technical Documentation: RBMS User Guides

18

2.6. Managing Facilities

2.7. Viewing list of facilities

To view the list of facilities

1. Click the Inventory tab.

2. In the left navigation pane, click Facilities. The list of available facilities appear.

2.7.1. Creating a Facility

To create a facility

1. Click the Inventory tab.

2. In the left navigation pane, click Facilities. The list of available facilities appear.

3. Click Add facility.

4. Specify the facility settings such as facility name, type, and description.

5. Click Add facility.

Technical Documentation: RBMS User Guides

19

2.8. Managing Racks

To view the list of racks

1. Click the Inventory tab.

2. In the left navigation pane, click Racks. The list of available racks appear.

2.8.1. Creating a Rack

To create a rack

1. Click the Inventory tab.

2. In the left navigation pane, click Racks. The list of available racks appear.

3. Click Add rack.

Technical Documentation: RBMS User Guides

20

4. Specify the rack settings such as rack name, administration state, description,
rack dimensions, and other additional information.

5. Click Add rack.

2.9. Managing DNS Zones

To view the list of DNS zones

1. Click the Inventory tab.

2. In the left navigation pane, click DNS Zones. The list of available DNS Zones
appear.

2.9.1. Creating a DNS Zone

To create a DNS zone

1. Click the Inventory tab.

2. In the left navigation pane, click DNS Zones. The list of available DNS zones
appear.

3. Click Add DNZ Zone.

4. Specify the rack settings such as canonical DNS zone name and description.

5. Click Add zone.

Technical Documentation: RBMS User Guides

21

2.10. Inventory Administration

To configure the inventory administration settings in the Inventory page, click the
plus sign (+) next to Administration.

2.10.1. Managing element platforms

To list down the known hardware platforms

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration.

3. Click Platforms. The list of hardware platforms appear.

Creating element platforms

To create a hardware platform

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration.

3. Click Platforms. The list of hardware platforms appear.

4. Click Add platform.

5. Specify the settings and dimensions of the hardware platform.

6. Click Save platform.

Removing element platforms

To remove an element platform

1. Click the Inventory tab.

2. Click the plus sign (+) next to Administration, and then click Platforms. The
list of hardware platforms appear.

3. Click the name of the element platform that you want delete. The Platform
Settings page displays the settings of the element platform.

4. Click Remove.

Technical Documentation: RBMS User Guides

22

2.10.2. Managing Element Roles

To list down the existing element roles

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration.

3. Click Roles. The list of existing element roles appear.

Creating Element Roles

To create an element role

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration. The list of existing element roles
appear.

3. Click Roles. The list of existing element roles appear.

4. Click Add role

5. Specify the role settings.

6. Click Save role.

Removing Element Roles

To remove an element role

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration. The list of existing element roles
appear.

3. Click Roles. The list of existing element roles appear.

4. Click the name of the element role that you want delete. The next page
displays the settings of the element role.

5. Click Remove role.

2.10.3. Managing Templates

To list down the existing templates

Technical Documentation: RBMS User Guides

23

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration.

3. Click Templates. The list of existing element templates appear.

Creating Templates

To create a template

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration. The list of existing element
templates appear.

3. Click Add templates

4. Specify the template settings such as template name and description.

5. Click Save template.

Removing Templates

To remove a template

1. Click the Inventory tab.

2. click the plus sign (+) next to Administration. The list of existing element
templates appear.

3. Click Templates. The list of existing element templates appear.

4. Click the name of the template that you want delete. The next page displays
the settings of the template.

5. Click Remove template.

Technical Documentation: RBMS User Guides

24

3. Managing Software Images
RBMS manages a list of software images that are currently installed on the
switches in the network or eligible for being installed. The image lifecycle
encompasses the following states:

• NEW, a new image that has been uploaded to RBMS but is not yet eligible for
deployment. Typcially the integrity of a new image needs to be verified before
it becomes eligible for deployment.

• CANDIDATE, a candidate image is eligible for deployment. It is a candidate to
become the new release image if it passes all tests in the network.

• RELEASE, the release image gets installed by default.

• SUPERSEDED, a superseded image is a former release image which has been
replaced by a newer release.

• REVOKED, a revoked image must not be installed on switches in the network.

Superseded and revoked images are kept in the resource inventory for the sake of
documentation and to track on how many switches superseded or revoked images
are installed.

The rtb-image tool provides an option to register new image in RBMS. The new
image can be installed on a switch via Zero-Touch Provisioning (ZTP).

3.1. Viewing all registered images

To view all registered images

• Click the Images tab. The Images page appears, showing the list of registered
images.

Technical Documentation: RBMS User Guides

25

The Images page displays the following fields:

Field Description

Name Name of the software image

State Indicates the image state such as New, Candidate, Release,
Suspended, Revoked. For more information, see the Image
Lifecycle Management section.

Type Type of the software image such as LXC or ONL

Chipset Specifies the supported hardware name

Version Version of the software image

Roles The image is deployed on the specified element roles.

Element Name of the registered element

3.1.1. Viewing image details

To view the details of an image

1. Click the Images tab. The list of registered images appear.

2. In the Images group box, click the name of the image that you want to view.
The image details page appears.

Technical Documentation: RBMS User Guides

26

This page displays the following fields:

Field Description

Image ID Image UUID (read-only)

Organization The organization that issued the image

Image Type The image type (read-only)

Image Name The unique image name

Image Version Image version (read-only)

Category Optional image category

Description Optional description of the image

Platform Chipset The chipset this image is build for (read-only)

Element Roles This image can be deployed on the selected element roles

Supported
Platforms

The list of platforms on which the image can be installed

3.1.2. Updating image metadata

To update the metadata of an image

1. Click the Images tab. The list of registered images appear.

Technical Documentation: RBMS User Guides

27

2. In the Images group box, click the name of the image whose metadata you
want to update. The image details page appears.

3. On the left navigation pane, click Metadata.

4. Update image metadata such as image ID, type, name, and version.

5. Click Save settings.

3.2. Image Lifecycle Management

The image lifecycle defines five different image states. A new image is an image
that has not yet been approved to be eligible for a deployment. The release image
is deployed by default. A candidate image is intended to become the new default
image, once the candidate has passed all necessary tests. The existing default
image is superseded by the new default image. A revoked image must not be used
any longer because it contains severe errors.

1. Click the Images tab. The list of registered images appear.

2. Click the name of the image that you want to view.

3. Click State in the left navigation pane.

4. From the following list of states, select the state that you want to apply.

Technical Documentation: RBMS User Guides

28

• New: Newly registered image

• Candidate: Candidate for the next release image

• Release: The image to be installed by default

• Superseded: A former release image that has been superseded by a newer
image version

• Revoked: The image must not be used anymore.

5. Click Save state.

Technical Documentation: RBMS User Guides

29

4. Managing Logs

4.1. Introduction

In order to understand the RBMS log viewer it is key to understand the RBFS
logging concept. RBFS stores log information in Brick Data Store (BDS) tables. The
BDS is an in-memory database developed by RtBrick and optimized for the
networking domain. The BDS log tables contain only the raw data of a log event.
Exporters pass the raw data to a template string to create a human friendly log
message.

By default RBFS exports log messages in GELF format. The Graylog Extended
Logging Format (GELF) is a JSON representation of the Syslog protocol, with the
option to add custom fields.

The CTRLD forms the egress node for all GELF messages. CTRLD receives log
messages from brick daemons, augments the GELF message with the element
name, element role, serial number and pod name and forwards it to the
configured GELF endpoint. In addition, CTRLD receives all notification of the
Prometheus Alert Manager running on the switch and translates them to GELF
messages. Last but not least, CTRLD generates GELF messages to log events.

All messages are send to a configured GELF endpoint. The GELF endpoint stores
the data in a central log database. The GELF message is already a structured

Technical Documentation: RBMS User Guides

30

message. Thus the endpoint does not have to create a log message into a
structured record.

RBMS queries log events from the log management system to provide quick access
to log messages. In addition, RBMS links all log messages to the inventory records
to quickly inspect the state of an element.

4.2. Viewing log events

The log viewer reads log records from the Elasticsearch database. The query is
formed from the resource inventory data and can be amended by the operator to
fine-tune the result set. You can inspect the details of a log message in the RBMS
UI.

To view the list of logs

1. Click the Logs tab. The list of all log events occurred in the network within the
last five minutes having at least WARNING severity appears.

2. Click the timestamp of the event that you want to view.

4.3. Filtering log events

To filter the list of logs

Technical Documentation: RBMS User Guides

31

1. Click the Logs tab. The list of all log events occurred in the network appear.

2. Specify the filter criteria to filter the log events.

Technical Documentation: RBMS User Guides

32

5. Metric Management

5.1. Overview

In order to understand metric processing in RBMS it is key to understand how
metrics are sampled on RBFS.

RBFS runs Prometheus, an open-source monitoring tool with built-in time series
database, to sample metrics from the Brick Data Store (BDS). The BDS is an in-
memory database developed by RtBrick and optimized for networking use cases.
All configuration and state information is stored in BDS. BDS can be configured to
expose certain BDS attributes as metrics in the Prometheus Exposition Format.
Prometheus periodically samples the exposed values to create a time series over
them. The Prometheus Query Language allows querying the time series data and
to apply transformations and statistical computations.

Prometheus includes an alert manager to scan time series for alert conditions and
to create a notification whenever an alert condition is satisfied. Since Prometheus
runs on the switch the alert conditions are also evaluated on the switch.

All metrics and alerts that shall be enabled permanently by default are configured
in the running configuration of the switch. CTRLD allows enabling and disabling
metrics on-demand.

The main goal of RBMS is to provide quick access to metrics and time series
visualization. RBMS runs a Prometheus instance to federate metrics from the
Prometheus instances on the switches. Grafana, an open-source visualization
platform, is used to visualize time series data.

The figure below summarizes how RBMS interfaces with Grafana and Prometheus.

Technical Documentation: RBMS User Guides

33

http://prometheus.io
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://www.grafana.com

The RBMS UI provides quick access to Grafana dashboards and embedds
dashboard panels in the RBMS UI. In addition, RBMS queries Prometheus based on
the configured metrics and the inventory data to provide quick access to the
current metric values.

The Metrics Sampling and Monitoring Tutorial provides more
details about the concepts outlined in this section.

5.2. Working with metrics

5.2.1. Viewing metrics

To view the metrics of an element

1. Click the Inventory tab. The list of pods appears.

2. In the pods group box, click on the elements link for pod that contains the
element you want to view the metrics for. The list of elements appears.

3. In the elements group box, click on the element you want to view the metrics
for.

Technical Documentation: RBMS User Guides

34

4. Click Metrics in the left navigation pane. The list of metrics and their current
values appears.

5. Click on graph to view the time series of a metric.

Technical Documentation: RBMS User Guides

35

5.2.2. Enabling a metric

To enable a metric, go to the metric list view

1. Click Configure metrics. A list of available metrics appears.

Technical Documentation: RBMS User Guides

36

2. Click Enable for all metrics you want to enable.

5.2.3. Disabling a metric

To disable a metric, go to the metric list view

1. Click Configure metrics. A list of available metrics appears.

2. Click Disable for all metricy you want to disable.

5.2.4. Viewing element dashboards

To open a dashboards of an element

1. Click the Inventory tab. The list of pods appears.

2. Click on Elements in the left navigation pane to show the list of known
elements.

3. Click on the element for which you want to access a dashboard. Use the filter
to search for a particular element.

4. Click on Dashboards. The list of available dashboards appears.

Technical Documentation: RBMS User Guides

37

5. Click on the Dashboard you would like to view. RBMS opens the dashboard in
Grafana.

5.3. Managing metrics

5.3.1. Adding a new metric

To add a metric

1. Click the Metrics tab. The list of metrics appears in the Metrics page.

2. In the Metrics page, click the Add metric button. The New Metric page
appears.

Technical Documentation: RBMS User Guides

38

3. In the Metric Name field, assign a unique metric name.

The metric name should be in lower case. The name suffix should
contain the metric unit. The name prefix should be used to group
metrics. Use the _ as delimiter. For example
psu_powerout_milliwatts or psu_voltageout_millivolts

4. In the Display Name field, assign a descriptive metric name.

5. In the Unit field, specify the metric unit (e.g. °C, W, bps)

6. In the Scope field, select the scope of the metric.

The following metric scopes exist:

Metric Scope Description

Element The metric exists for the element (e.g.
chassis temperature)

Physical Interface The metric exists per physical interface
(e.g. interface utilization)

Service The metric exists per service or daemon
(e.g. CPU and memory utilization of a
daemon)

Technical Documentation: RBMS User Guides

39

Logical Interface The metric exists per logical interface.

7. Optionally restrict the metric to certain element roles and platforms.

8. Click Add metric.

Adding the CTRLD configuration

The CTRLD configuration contains the JSON message to enable the metric via
CTRLD.

To add the CTRLD configuration

1. Click Configurations in the left navigation pane. The list of configurations
appears.

2. Click Add config. The New Configuration view appears.

3. Add the CTRLD JSON object to the JSON editor.

Technical Documentation: RBMS User Guides

40

The Metrics sampling and monitoring tutorial provides more
information about how to use CTRLD API to manage metrics.

4. In the Configuration Name field, enter CTRLD.

Technical Documentation: RBMS User Guides

41

5. In the Category field, enter RBFS.

6. In the Description field, enter an optional description for the configuration.

7. Click Add config to add the new configuration.

The value of the metric_name attribute in the CTRLD JSON object
must be equal to the metric name in RBMS to avoid trouble.

Adding the Prometheus configuration

The Prometheus configuration provides the Prometheus queries to fetch the
metrics from Prometheus.

To add the Prometheus configuration.

1. Click Configurations in the left navigation pane. The list of configurations
appears.

2. Click Add config. The New Configuration view appears.

Technical Documentation: RBMS User Guides

42

3. Add the Prometheus JSON object to the JSON editor.

The Prometheus JSON object contains the following properties:

Attribute Description

element The Prometheus query to fetch the
metric values for an element. RBMS
replaces {{element_name}} with the
name of the selected element.

ifp The Prometheus query to fetch the
metric values for a physical interface.
RBMS replaces {{element_name}} with
the name of the selected element and
{{ifp_name}} with the name of the
selected physical interface.

ifl The Prometheus query to fetch the
metric values for a logical interface.
RBMS replaces {{element_name}} with
the name of the selected element and
{{ifl_name}} with the name of the
selected physical interface.

Technical Documentation: RBMS User Guides

43

service The Prometheus query to fetch the
metric values for a physical interfaces.
RBMS replaces {{element_name}} with
the name of the selected element and
{{service_name}} with the name of the
selected physical interface.

labels String array with the names of the labels
that shall be displayed in the metrics
list.

4. In the Configuration Name field, enter Prometheus.

5. In the Category field, enter RBFS.

6. In the Description field, enter an optional description for the configuration.

7. Click Add configuration to add the new configuration.

5.3.2. Removing a metric

To remove a metric from RBMS

1. Click on the Metrics tab. The list of metrics appears.

2. Click on the metric you want to remove.

3. Click on Remove metric. A confirmation dialog appears.

4. Click on Confirm to remove the metric. Check the force option to remove the
metric including the metric configurations.

5.4. Managing dashboards

5.4.1. Registering Dashboards

Configuring the visualization platform

RBMS needs to know the visualization platform hosting the
dashboard that shall be accessible from RBMS.

To register a visualization platform

1. Click the Inventory tab.

Technical Documentation: RBMS User Guides

44

2. Click on + to expand the Administration menu.

3. Click on Dashboard & Panels in the navigation pane. The list of registered
dashboards and panels appears.

4. Click on Add visualization platform. The list of known visualization platforms
appears.

5. Click on Add visualization platform to add a new visualization platform. The
New visualization platform appears.

Technical Documentation: RBMS User Guides

45

In the Name field, provide a unique visualization platform name. In the Origin
field, provide the origin of the visualization. In the Description field, provide an
optional description of the visualization platform.

Click Add visualization platform to add the visualization platform.

Registering a dashboard

The dashboard must accept an element query parameter
specifying the element for which the metrics shall be displayed.

To add a Grafana dashboard to RBMS

1. Open the dasbhoard in Grafana.

2. Click the Share Icon.

Technical Documentation: RBMS User Guides

46

3. Uncheck the Current time option.

4. Select the light theme.

5. Click on Copy to copy the displayed link.

6. Proceed to RBMS.

7. Click on the Inventory tab.

8. Click on + to expand the Administration menu.

9. Click on Dashboard & Panels in the left navigation pane. The list of registered
dashboard and panels appears.

Technical Documentation: RBMS User Guides

47

10. Click Add visualization. The New Visualization page appears.

11. From the Visulization Platform select box, select the Grafana instance that
hosts the dashboard.

12. In the Visualization Name field, specify a unique descriptive name. The name
is displayed in the dashboard list of an element.

Technical Documentation: RBMS User Guides

48

13. In the Description field, add an optional dashboard description. The
description is displayed in the element dashboard list.

14. Paste the link into the URL field. Assign {{element_name}} as value for the
element variable declared in the dashboard. RBMS replaces {{element_name}}
with the name of the currently displayed element.

15. Optionally restrict the dashboards to certain element roles or platforms.

16. Click Add visualization to add the dashboard.

Registering a panel for a configured metric

The panel must accept URL query parameters specifying the
element for which the metric shall be displayed.

To add a Grafana panel to RBMS

1. Open the dasbhoard in Grafana.

2. Open the context menu for the panel you want to embedd in RBMS.

3. Click the Share menu.

Technical Documentation: RBMS User Guides

49

4. Uncheck the Current time option.

5. Select the light theme.

6. Click on Copy to copy the displayed link.

7. Proceed to RBMS.

8. Click on the Inventory tab.

Technical Documentation: RBMS User Guides

50

9. Click on + to expand the Administration menu.

10. Click on Dashboard & Panels in the left navigation pane. The list of registered
dashboard and panels appears.

11. Click Add visualization. The New Visualization page appears.

Technical Documentation: RBMS User Guides

51

12. From the Visulization Platform select box, select the Grafana instance that
hosts the dashboard.

13. In the Visualization Name field, specify a unique descriptive name.

14. Check the Panel checkbox.

15. In the Panel Name field, add the name of the metric displayed in the panel.

16. In the Width field, add the width of the panel as absolute value (px or em) or in
percent.

17. In the Height field, add the height of the panel as absolute value (px or em) or
in percent.

Technical Documentation: RBMS User Guides

52

18. In the Description field, add an optional dashboard description. The
description is displayed in the element dashboard list.

19. Paste the link into the URL field. Assign {{element_name}} as value for the
element variable declared in the dashboard. RBMS replaces {{element_name}}
with the name of the currently displayed element.

20. Optionally restrict the panel to certain element roles or platforms.

21. Click Add visualization to add the panel.

5.4.2. Support for other visualization platforms

RBMS supports all visualization platforms accepting the element for which data
shall be displayed as URL query parameter.

Technical Documentation: RBMS User Guides

53

6. Metric Sampling and Monitoring

6.1. Metric sampling Overview

Metric sampling is configured through the CTRLD/RESTCONFD API. The sampled
data is stored in Prometheus, an open source monitoring tool with a built-in time
series database (TSDB), and can be queried from the switch using PromQL, the
Prometheus Query Language. The CTRLD API also supports programming alert
conditions in Prometheus Alert Manager.

Figure 1. Metric sampling and monitoring overview.

Brick daemons feeding data into BDS are not depicted to keep the drawing simple.

6.1.1. BDS as Single Point of Truth

The Brick Data Store (BDS) is an object-oriented in-memory database that stores
the switch configuration and operational state. BDS objects are typed objects,
which means that every object and object attribute is of a certain type. BDS objects
are described in schemas and organized in tables. One or more indexes per table
exists to query objects. BDS supports sampling values from

• BDS object attributes and from

• BDS table indexes.

Every numeric BDS object attribute can be periodically sampled to create a time

Technical Documentation: RBMS User Guides

54

series of the attribute value. In addition, BDS provides built-in converters for some
attribute types that can be converted to numeric values. The bandwidth type is a
good example. The bandwidth is stored as a string and consists of a numeric value
and a data rate unit, for example, 100.000 Gbps. The built-in converter translates
the bandwidth to a numeric value in bits per seconds.

BDS indexes are sampled if the number of objects in a table is of interest. This
tutorial includes examples for object- and index-based metrics.

6.1.2. Metric Types

There exist two types of metrics:

• gauge

• counters

A gauge metric values are within a certain range and can basically be visualized as
is or after applying a simple linear transformation. The value of a gauge metric can
increase and decrease. A temperature value is an example for a metric of type
gauge.

Counters increase until they are reset manually or by a restart (or by an overflow
which is very unlikely to happen because of the length of the data word to store
the counter value). The interesting aspect when working with counters is the delta
of the count value between two samples, i.e. the derivation of the counter value
over time. The derivation of the counter value is still an absolute value that needs
to be put into perspective to the available resources to compute the resource
utilization in percent. The CPU tick counters are examples for counter metrics.

6.1.3. Metric Labels

Metric labels separate metric instances from each other. Metric labels have either
a static value or is read from a BDS object attribute.

The byte counters, for example, exist for each physical interface. The ifp_name
label assigns the sampled counter values to the physical interface and is read from
the interface_name attribute.

Technical Documentation: RBMS User Guides

55

6.1.4. Sampling Rate and Retention Period

The sampling rate is 5 seconds and the retention period is five days. The
configuration is built-in to the image and cannot be changed through the CTRLD
API.

6.1.5. Metric Monitoring

Metric monitoring relies on the Prometheus Alert Manager. The alert manager
notifies CTRLD about all satisfied alert conditions. CTRLD translates the notification
and forwards the message to the configured log management system. CTRLD
exposes an API for programming alert conditions and in turn programs the
Prometheus Alert Manager based on the specified alert rules.

6.2. Temperature Monitoring

The first example in this tutorial samples and monitors temperature values to
outline how to work with gauge metrics. Open the RBFS CLI and run show sensor
temperature` to list all available temperature sensors.

Listing 1 - CLI output of temperature values.

supervisor@rtbrick>BNG: op> show sensor temperature
Name Temperature Status
CPU Core 49°C PRESENT
LM75-1-48 34°C PRESENT
LM75-2-49 33°C PRESENT
LM75-3-4A 29°C PRESENT
LM75-3-4B 31°C PRESENT
PSU-1 Thermal Sensor 1 28°C PRESENT

This switch has four chassis temperature sensors (LM75), a CPU temperature
sensor (CPU Core) and a power supply unit (PSU) temperature sensor (PSU-1
Thermal Sensor 1). A switch typically has two independent power supply units. The
second PSU of this switch was not attached in the lab environment.

The temperature is read from the temperature attribute of the sensor_object
stored in the global.chassis_0.resource.sensor BDS table. The sensor object also
includes a type (resource_type attribute) and a name (resource_name attribute). The
unit of the temperature is millidegree celsius. An excerpt of the sensor schema
definition is listed below:

Technical Documentation: RBMS User Guides

56

Listing 2 - Excerpt from BDS sensor object schema definition.

 {
 "codepoint": 2,
 "name": "resource_name",
 "type": "string",
 "description": "Name of the resource"
 },
...
 {
 "codepoint": 4,
 "name": "resource_type",
 "type": "string",
 "description": "resource type"
 },
 ...
 {
 "codepoint": 33,
 "name": "temperature",
 "type": "uint32",
 "description": "temperature in millidegree celsius"
 }

Contact RtBrick professional services if you need help in finding
the BDS table and attribute names.

6.2.1. Sampling Temperature Sensors

Based on the available sensors it makes sense to create three temperature
metrics:

• chassis_temperature_millicelsius to sample the chassis temperature

• cpu_temperature_millicelsius to sample the CPU temperature and

• psu_temperature_millicelsius to sample the PSU temperature.

The CTRLD/RESTCONFD API exposes the
`/api/v1/rbfs/elements/{{element}}/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric={metric_name} endpoint. A HTTP PUT request to this
endpoint configures a metric by either creating a new metric or replacing an
existing metric with the specified {metric_name}. {element} contains the name of
the element assigned in the element configuration file and defaults to the
container name if no element name was specified. The default container name is
rtbrick.

All metrics need to be labeled with the sensor name. In addition, a filter is needed
to sample only the sensors for the respective type of temperature. The listings

Technical Documentation: RBMS User Guides

57

below show the JSON objects to sample the chassis temperature as an example:

Listing 3 - JSON object to configure chassis temperature sampling.

{
 "rtbrick-config:metric": [
 {
 "name": "chassis_temperature_millicelsius",
 "table-name": "global.chassis_0.resource.sensor",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "Chassis temperature in millidegree celsius",
 "filter": [
 {
 "match-attribute-name": "resource_name",
 "match-attribute-value": "LM.*",
 "match-type": "regular-expression"
 },
 {
 "match-attribute-name": "resource_type",
 "match-attribute-value": "thermal",
 "match-type": "exact"
 }
],
 "attribute": [
 {
 "attribute-name": "temperature",
 "label": [
 {
 "label-key": "sensor",
 "label-value": "resource_name",
 "label-type": "dynamic"
 }
]
 }
]
 }
]
}

The temperature metric is of type gauge (metric_type) and sample from a BDS
object (bds_metric_type). The temperature value shall be sampled, which is of
numeric type (uint32, see the schema definition above). The filter section makes
sure that only thermal sensors are sampled and also filters for the LM sensors that
measure the chassis temperature.

6.2.2. Querying the Chassis Temperature

The following PromQL query returns the chassis temperature in degree Celsius
from the Prometheus running on the switch.

chassis_temperature_millicelsius / 1000

Technical Documentation: RBMS User Guides

58

The next query converts the chassis_temperature from degree Celsius to
Fahrenheit:

(chassis_stemperature_millicelsius / 1000) * 9 / 5 + 32

Both expressions are examples for simple linear transformations of a gauge
metric. The queries can be used in Grafana to visualize the chassis temperature
time series. The screenshot below shows a chassis temperature panel of a Grafana
dashboard:

Figure 2. Chassis temperature Grafana panel.

The Grafana dashboard settings for the metrics used in this
tutorial can be requested from RtBrick professional services.

6.2.3. Monitoring Temperature Values

A high temperature can damage the device or shorten its lifetime. Therefore it
makes sense to monitor the temperature to get notified about critical temperature
values. The alert condition is defined by the acceptable duration of exceeding a
specified temperature value, for example, the average chassis temperature is not
allowed to exceed 40°C over the last five minutes.

The temperature threshold and evaluation period are example
values. The actual values must be taken from the hardware
platform documentation or requested from the vendor.

The listing below shows the complete chassis temperature alert rule.

Technical Documentation: RBMS User Guides

59

Listing 4 - Chassis temperature alert rule.

{
 "rtbrick-config:alert": [
 {
 "name": "ChassisTemperatureAlert",
 "group": "health",
 "interval": "1m",
 "expr": "avg_over_time(chassis_temperature_millidegrees[1m]) / 1000 >
40",
 "for": "5m",
 "level": "1",
 "summary": "The chassis temperature exceeded 40°C.",
 "description": "The {{$labels.element_name}} average chassis
temperature over the past 5 minutes exceeded 40°C."
 }
]
}

The alert rule evaluates every single minute (interval) whether the average
temperature in the past minute exceeded 40 degrees (expr) and raises an alert if
the expression is satisfied for 5 minutes (for), that is, 5 times in a row. The
summary field contains a short description of the problem whereas the optional
description field contains a more detailed message. The summary is mapped to
the short_message GELF field and the description is mapped to the full_message
GELF field. The severity is set to Alert (level). The level attribute values are taken
from the GELF format which in turn took it from the Syslog protocol. The table
below lists all supported levels:

GELF message severity levels

Level Description as in RFC 5424

Name Comment

0 Emergency System is unusable

1 Alert Action must be taken immediately

2 Critical Critical conditions

3 Error Error conditions

4 Warning Warning conditions

5 Notice Normal but significant condition

6 Informational Informational messages

7 Debug Debug-level messages

Every alert rule has a unique name (alert_rule_name). The PUT operation replaces

Technical Documentation: RBMS User Guides

60

an existing alert rule with the same name. Every alert rule is assigned to exactly
one alert group (alert_group). All alert rules in the same alert group with the same
interval setting are evaluated at the same time.

The for attribute is optional. A similar alert rule can be implemented by omitting
the for attribute and computing the average temperature over the past five
minutes:

Listing 5 - Alternative chassis temperature alert rule.

{
 "rtbrick-config:alert": [
 {
 "name": "ChassisTemperatureAlert",
 "group": "health",
 "interval": "1m",
 "expr": "avg_over_time(chassis_temperature_millidegrees[5m]) / 1000 >
40",
 "level": "1",
 "summary": "The chassis temperature exceeded 40°C.",
 "description": "The {{$labels.element_name}} average chassis
temperature over the past 5 minutes exceeded 40°C."
 }
]
}

There is a subtle difference between both rules. Consider the following
temperature values:

Figure 3. Chassis temperature values.

The first rule does not fire because the threshold is only exceeded for three times,
whereas the second rule fires because the average over the past five minutes

Technical Documentation: RBMS User Guides

61

exceeds 40°C. In fact, the second rule fires an alert albeit the temperature exceeds
the alert threshold for 4 minutes only. How about using the min rather than the
avg function, i.e. the temperature must exceed the threshold for five minutes? In
this case, the rule wouldn’t fire an alert if the chassis temperature is wobbling
around the threshold.

The first rule aims to mitigate both effects:

• The first rule fires an alert if the chassis temperature is wobbling around the
threshold but on average exceeds the threshold five times in a row.

• The first rule does not fire an alert in case of a chassis temperature spike as
depicted in Figure 3, because a spike does not satisfy the rule five times in a
row.

6.3. CPU Utilization

The second example measures the CPU utilization to outline how to work with
counter metrics. Open the RBFS CLI and run show cpu usage to display the current
CPU utilization.

Listing 6 - CPU core utilization CLI command.

supervisor@rtbrick>BNG: op> show cpu usage

Name Total User System Nice I/O Wait Idle IRQ Soft IRQ

cpu 4% 2% 2% 0% 0% 95% 0% 0%

cpu0 1% 0% 1% 0% 0% 99% 0% 0%

cpu1 16% 12% 4% 0% 0% 83% 0% 0%

cpu2 3% 2% 0% 0% 0% 96% 0% 0%

cpu3 10% 1% 9% 0% 0% 89% 0% 0%

cpu4 2% 1% 1% 0% 0% 97% 0% 0%

cpu5 4% 0% 4% 0% 0% 96% 0% 0%

cpu6 3% 3% 0% 0% 0% 97% 0% 0%

cpu7 0% 0% 0% 0% 0% 100% 0% 0%

The CPU provides a set of counters to measure the CPU utilization in jiffies /3/. A
jiffy is the duration of a software clock tick, which is platform-dependent. By that, a
jiffy is neither a constant period of time nor very meaningful to a human, which is
why the counter values need to be put into perspective.

First, it is important to measure the total CPU utilization to see how busy the
switch is. Secondly, if the CPU utilization is considerably high, it is interesting to
find out which processes cause the high CPU utilization. Both aspects are
addressed in this tutorial.

The time spend in user and kernel space needs to be divided by the total amount

Technical Documentation: RBMS User Guides

62

of available processing time to compute the total CPU utilization:

total_cpu_utilization = (total_cpu_user_jiffy + total_cpu_sys_jiffy) /
(total_cpu_total_jiffy)

where

• total_cpu_user_jiffy is the total amount of time spent in user mode in a
sampling interval,

• total_cpu_sys_jiffy is the total amount of time spent in kernel mode in a
sampling interval and

• total_cpu_total_jiffy is the total amount of computing time available in a
sampling interval.

The cpu_total_utilization value is dimensionless. The value range is between 0 and
1. It can be converted into percentage by being multiplied by 100%.

total_cpu_utilization_percentage = total_cpu_utilization * 100%

The process total load ratio expresses the ratio a process load to the total load:

proc_total_load_ratio = (proc_cpu_user_jiffy + proc_cpu_sys_jiffy) /
(total_cpu_user_jiffy + total_cpu_sys_jiffy)

where

• proc_cpu_user_jiffy is the process time spent in user mode in a sampling
interval and

• cpu_sys_proc_jiffy is the process time spent in user mode in a sampling interval

The process_total_load_ratio value is dimensionless. The value range is between 0
and 1. It can be converted into percentage by being multiplied by 100%.

proc_total_load_ratio_percentage = proc_total_load_ratio * 100%

6.3.1. Sampling CPU Counters

The CPU counters are located in two different tables. The total CPU utilization can
be sampled from the user_cpu_tick, sys_cpu_tick and total_cpu_tick attributes in
the global.chassis_0.resource.cpu_usage table. This table contains the total

Technical Documentation: RBMS User Guides

63

counters but also counters per supported hardware thread (virtual core).

The JSON objects below enables CPU counter sampling for the three mentioned
counters:

Listing 7 - JSON object to enable total CPU utilization counter sampling.

{
 "rtbrick-config:metric": {
 "name": "total_cpu_total_jiffy",
 "table-name": "global.chassis_0.resource.cpu_usage",
 "bds-type": "object-metric",
 "prometheus-type": "counter",
 "description": "Total CPU utilization in jiffies",
 "attribute": [
 {
 "attribute-name": "total_cpu_tick",
 "label": [
 {
 "label-key": "cpu",
 "label-value": "cpu_id",
 "label-type": "dynamic"
 }
]
 }
]
 }
}

Listing 8 - JSON object to enable total user mode CPU utilization counter sampling.

{
 "rtbrick-config:metric": {
 "name": "total_cpu_user_jiffy",
 "table-name": "global.chassis_0.resource.cpu_usage",
 "bds-type": "object-metric",
 "prometheus-type": "counter",
 "description": "Total user CPU utilization.",
 "attribute": [
 {
 "attribute-name": "user_cpu_tick",
 "label": [
 {
 "label-key": "cpu",
 "label-value": "cpu_id",
 "label-type": "dynamic"
 }
]
 }
]
 }
}

Listing 9 - JSON object to enable total kernel CPU utilization counter sampling.

{

Technical Documentation: RBMS User Guides

64

 "rtbrick-config:metric": {
 "name": "total_cpu_sys_jiffy",
 "table-name": "global.chassis_0.resource.cpu_usage",
 "bds-type": "object-metric",
 "prometheus-type": "counter",
 "description": "Total kernel CPU utilization in jiffies",
 "attribute": [
 {
 "attribute-name": "sys_cpu_tick",
 "label": [
 {
 "label-key": "cpu",
 "label-value": "cpu_id",
 "label-type": "dynamic"
 }
]
 }
]
 }
}

6.3.2. Computing Total CPU Utilization From Counter
Samples

The Prometheus Query Language /2/ provides functions to work with counters and
also allows to put time series into perspective.

Some PromQL functions should be used for gauge metrics only
others only for counter metrics.

The PromQL queries below computes the total user, kernel and user + kernel CPU
utilization:

rate(total_cpu_user_jiffy{cpu="cpu"}[60s])
/ rate(total_cpu_total_jiffy{cpu="cpu"}[60s])

rate(total_cpu_sys_jiffy{cpu="cpu"}[60s])
/ rate(total_cpu_total_jiffy{cpu="cpu"}[60s])

(rate(total_cpu_user_jiffy{cpu="cpu"}[60s])
 + rate(total_cpu_sys_jiffy{cpu="cpu"}[60s]))
/ rate(total_cpu_total_jiffy{cpu="cpu"}[60s])

The rate function computes the delta between two sampled count values. The rate
function is optimized for counters and can detect counter resets by being aware
that a counter value always increases unless a reset has taken place. The rate
function handles counter resets properly. The cpu label filters for the total count
values for all virtual cores.

Technical Documentation: RBMS User Guides

65

The PromQL query below computes the virtual core utilization:

(rate(total_cpu_user_jiffy{cpu!="cpu"}[60s])
 + rate(total_cpu_sys_jiffy{cpu!="cpu"}[60s]))
/ rate(total_cpu_total_jiffy{cpu!="cpu"}[60s])

The cpu label identifies the virtual core. The BDS contains count values for each
virtual core but also the total count over all virtual cores. The first dashboard
queried the total count by filtering for cpu="cpu", whereas the second dashboards
fetched the per virtual core counters by filtering for cpu!="cpu", i.e. by excluding
the total count over all virtual cores from the result set.

The screenshots below show Grafana dashboard panels to display the computed
total CPU utilizations and the utilization of the virtual cores.

Figure 4. Total CPU utilization Grafana panel.

Technical Documentation: RBMS User Guides

66

Figure 5. Virtual core utilization Grafana panel.

6.3.3. Sampling Process CPU Counters

The next step is to compute the per process CPU utilization. This requires to
sample the process utilization counters of each process and put them into
perspective of the total CPU counters.

The process CPU usage can be read from the cpu_user and cpu_sys attributes in
the global.chassis_0.resource.proc_usage table. The process name can be read from
the process_name attribute. The listings below configure user mode and kernel
mode CPU utilization sampling per process:

Listing 10 - JSON object to enable process kernel mode CPU utilization sampling.

{
 "rtbrick-config:metric": {
 "name": "proc_cpu_sys_jiffy",
 "table-name": "global.chassis_0.resource.proc_usage",
 "bds-type": "object-metric",
 "prometheus-type": "counter",
 "description": "Process kernel mode CPU utilization in jiffies",
 "attribute": [
 {
 "attribute-name": "cpu_sys",
 "label": [
 {
 "label-key": "process",
 "label-value": "process_name",
 "label-type": "dynamic"
 }

Technical Documentation: RBMS User Guides

67

]
 }
]
 }
}

Listing 11 - JSON object to enable process user mode CPU utilization sampling.

{
 "rtbrick-config:metric": {
 "name": "proc_cpu_user_jiffy",
 "table-name": "global.chassis_0.resource.proc_usage",
 "bds-type": "object-metric",
 "prometheus-type": "counter",
 "description": "Process user mode CPU utilization in jiffies",
 "attribute": [
 {
 "attribute-name": "cpu_user",
 "label": [
 {
 "label-key": "process",
 "label-value": "process_name",
 "label-type": "dynamic"
 }
]
 }
]
 }
}

6.3.4. Computing Process CPU Utilization From Counter
Samples

The PromQL query puts the CPU counters of each process into perspective of the
total CPU utilization.

(rate(proc_cpu_sys_jiffy[60s]) + rate(proc_cpu_user_jiffy[60s]))
/ scalar(rate(total_cpu_total_jiffy{cpu="cpu"}[60s]))

The scalar function converts the one-dimensional total_cpu_total vector to a scalar
to put the CPU process utilization into perspective.

Prometheus differentiates between vectors and scalars. Algebraic
operations between two vectors, like the addition of the
proc_cpu_sys and the proc_cpu_user vectors above, require that
both vectors have the same labels. Otherwise no data points are
returned by Prometheus, because a built-in filter excludes all
items with different labels from the computation.

Technical Documentation: RBMS User Guides

68

The screenshot below shows a Grafana panel to display the total CPU utilization of
each brick daemon.

Figure 6. Brick daemon CPU utilization.

6.4. PPPoE Session Count

Sampling the number of PPPoE sessions is an example for a metric from a
dedicated index table. The subscriber daemon maintains statistics of subscriber
sessions grouped by access interface, access type and session lifecycle state. The
show subscriber count command lists the session summary statistics

Listing 12 - Subscriber session count statistics

supervisor@BNG>rbms-tst00.vm.nbg.rtbrick.net: cfg> show subscriber count
 Total Setup Established Terminating Standby
Summary 1000 22 978 0 0
 PPPoE 1000 22 978 0 0
 L2TP 0 0 0 0 0
 IPoE 0 0 0 0 0
 L2BSA 0 0 0 0 0
 Test 0 0 0 0 0
hostif-0/0/1 1000 22 978 0 0
 PPPoE 1000 22 978 0 0
 L2TP 0 0 0 0 0
 IPoE 0 0 0 0 0
 L2BSA 0 0 0 0 0
 Test 0 0 0 0 0

The Listing below configures a metric to sample the PPPoE counters from the
subscriber session statistic.

Listing 13 - JSON object to enable PPPoE session count sampling

{
 "rtbrick-config:metric": {

Technical Documentation: RBMS User Guides

69

 "name": "pppoe_session_count",
 "table-name": "local.access.subscriber.count",
 "bds-type": "object-metric",
 "prometheus-type": "gauge",
 "description": "PPPoE sessions",
 "attribute": [
 {
 "attribute-name": "pppoe_setup",
 "label": [
 {
 "label-key": "ifp_name",
 "label-value": "ifp_name",
 "label-type": "dynamic"
 },
 {
 "label-key": "access_type",
 "label-value": "pppoe",
 "label-type": "static"
 },
 {
 "label-key": "state",
 "label-value": "setup",
 "label-type": "static"
 }
]
 },
 {
 "attribute-name": "pppoe_established",
 "label": [
 {
 "label-key": "ifp_name",
 "label-value": "ifp_name",
 "label-type": "dynamic"
 },
 {
 "label-key": "access_type",
 "label-value": "pppoe",
 "label-type": "static"
 },
 {
 "label-key": "state",
 "label-value": "established",
 "label-type": "static"
 }
]
 },
 {
 "attribute-name": "pppoe_terminating",
 "label": [
 {
 "label-key": "ifp_name",
 "label-value": "ifp_name",
 "label-type": "dynamic"
 },
 {
 "label-key": "access_type",
 "label-value": "pppoe",
 "label-type": "static"
 },
 {
 "label-key": "state",

Technical Documentation: RBMS User Guides

70

 "label-value": "terminating",
 "label-type": "static"
 }
]
 }
]
 }
}

The PPPoE session count can increase and decrease. Therefore
the metric type must be gauge rather than counter.

Each count is labelled with the access type, the session state and the access
interface name. This allows aggregation over all time-series to compute the total
counts per interface and also for the entire switch in Prometheus.

Run show datastore subscriberd table local.access.subscriber.count to display the
statistics raw data. The local.access.subscriber.count table contains one object for
each interface. Each object contains an attribute for each combination of access
type and lifecycle state.

Listing 14 - Subscriber session raw data.

show datastore subscriberd.1 table local.access.subscriber.count
Object: 0, Sequence 1, Last update: Fri Jan 12 09:48:35 GMT +0000 2024
 Attribute Type Length
Value
 ifp_name (1) string (9) 13
hostif-0/0/1
 interval (2) interval (26) 4
3000
 pppoe_setup (3) uint32 (4) 4
22
 pppoe_established (4) uint32 (4) 4
978
 pppoe_terminating (5) uint32 (4) 4
0
 pppoe_standby (6) uint32 (4) 4
0
 l2tp_setup (7) uint32 (4) 4
0
 l2tp_established (8) uint32 (4) 4
0
 l2tp_terminating (9) uint32 (4) 4
0
 l2tp_standby (10) uint32 (4) 4
0
 ipoe_setup (11) uint32 (4) 4
0
 ipoe_established (12) uint32 (4) 4
0
 ipoe_terminating (13) uint32 (4) 4
0
 ipoe_standby (14) uint32 (4) 4

Technical Documentation: RBMS User Guides

71

0
 l2bsa_setup (15) uint32 (4) 4
0
 l2bsa_established (16) uint32 (4) 4
0
 l2bsa_terminating (17) uint32 (4) 4
0
 l2bsa_standby (18) uint32 (4) 4
0
 test_setup (19) uint32 (4) 4
0
 test_established (20) uint32 (4) 4
0
 test_terminating (21) uint32 (4) 4
0
 test_standby (22) uint32 (4) 4
0

6.5. Count of Received IPv4 Unicast Prefixes

Sampling the number of received unicast prefixes is an example for an index
based metric. The IPv4 unicast prefixes are stored in the instance.default.ribd.1.fib-
local.ipv4.labeled-unicast table, which exists per routing instance with instance
being the instance name. The prefix count can be read by sampling the active-
entry-count attribute of the primary index. The listing below shows the JSON object
to sample the active PPPoE sessions:

Listing 15 - JSON object to enable PPPoE session count sampling

{
 "rtbrick-config:metric": {
 "name": "default_ipv4_unicast_prefix_count",
 "table-name": "default.ribd.1.fib-local.ipv4.unicast",
 "bds-type": "index-metric",
 "index-name": "primary",
 "prometheus-type": "gauge",
 "description": "IPv4 unicast prefixes default instance",
 "attribute": [
 {
 "attribute-name": "active-entry-count"
 }
]
 }
}

The prefix count can increase and decrease. Therefore the metric
type must be gauge rather than counter.

Run show datastore ribd schema table table-name default.ribd.1.fib-
local.ipv4.unicast to inspect the definition of the default.ribd.1.fib-local.ipv4.unicast
table.

Technical Documentation: RBMS User Guides

72

Listing 16 - Excerpt of the table definition CLI output

$ show datastore fibd schema table-name default.ribd.1.fib-local.ipv4.labeled-
unicast
{
 "table": {
 "type": "rib_fiblocal_v4_table",
 "object": "rib_entry",
 "table_objects": {
 "shared_object": "generic_table_attributes",
 "app_objects": [
 "generic_table_attributes"
]
 },
 "index": [
 {
 "name": "primary",
 "type": "radix",
 "immutable": true,
 "key": [
 "prefix4"
]
 },
 ...

The primary index uses the IPv4 prefix (prefix4) as key and contains an object per
prefix. Counting the objects therefore represents the stored prefixes.

6.6. Metric Management

A HTTP GET request to the
/api/v1/rbfs/elements/{{element}}/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric=/name CTRLD/RESTCONFD API endpoint lists all metrics
configured on the switch. A HTTP GET request to
`/api/v1/rbfs/elements/{{element}}/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric={metric_name} returns the complete metric settings.
{element} is the assigned element name and {metric_name} contains the name of
the requested metric.

Metric sampling is stopped by sending a HTTP DELETE request to the
/api/v1/rbfs/elements/{{element}}/services/restconfd/proxy/restconf/data/rtbrick-
config:time-series/metric={metric_name} RESTCONFD API endpoint to remove the
metric settings from the switch configuration. More information can be found in
the CTRLD/RESTCONFD API /1/.

Technical Documentation: RBMS User Guides

73

6.7. Grafana Dashboards

Grafana can visualize time series data from Prometheus /5/. Grafana can query the
Prometheus instance on RBFS by using CTRLD as proxy:

http://<SWITCH_MGMT_IP>:19091/api/v1/rbfs/elements/rtbrick/services/PROMETHEUS/pro
xy/

The downside of this approach is that a Prometheus datasource needs to be
created in Grafana for every switch. In addition, all dashboards must be created
per switch too, because a dashboard panel can operate on a single datasource
only. Fortunately, Prometheus can federate data from other Prometheus instances
/6/. By that, all sampled metrics get accessible through a single Prometheus
instance. In combination with Grafana dashboard variables, a dashboard can be
configured to access all existing switches.

Figure 7. Prometheus federation.

The federating Prometheus instance can assign new label names. This allows to
assign a unique element_name label value, if the element name is not specified on
the switches and defaults to rtbrick. The listing below shows an excerpt of the
Prometheus configuration to federate data from other Prometheus instances.

Listing 17 - Excerpt of a Prometheus federation configuration

scrape_configs:

Technical Documentation: RBMS User Guides

74

- job_name: federate
 params:
 match[]':
 - '{job="bds"}'
 static_configs:
 - targets: ["192.168.202.1:19091"]
 labels:
 element_name: "l1.pod2"
 __metrics_path__:
"/api/v1/rbfs/elements/rtbrick/services/PROMETHEUS/proxy/federate"
 - targets: ["192.168.202.2:19091"]
 labels:
 element_name: "s1.pod2"
 __metrics_path__:
"/api/v1/rbfs/elements/rtbrick/services/PROMETHEUS/proxy/federate"
 - targets: ["192.168.202.3:19091"]
 labels:
 element_name: "bl1.pod2"
 __metrics_path__:
"/api/v1/rbfs/elements/rtbrick/services/PROMETHEUS/proxy/federate"

The remaining step is to create a single datasource in Grafana to query the
federated time series data.

6.8. Summary

This tutorial outlines how to configure metric sampling and monitoring in RBFS.
Providing a full introduction to Grafana, Prometheus and the Prometheus Query
Language would go beyond the scope of this tutorial. However, we mentioned
some pitfalls and key aspects for working with PromQL and Grafana and
recommend looking up more information in the Grafana and Prometheus
documentations.

A postman collection to work with RBFS metrics and Grafana dashboards,
including the dashboards this tutorial refers to, can be requested from RtBrick.

6.9. References

/1/ /resources/techdocs/25.1.1.1/ctrld/01_switch_mgmt_api.html[Swi
tch Management API Overview]

/2/ Querying Prometheus
https://prometheus.io/docs/prometheus/latest/querying/basics/

/3/ Overview of time and timers
http://man7.org/linux/man-pages/man7/time.7.html

Technical Documentation: RBMS User Guides

75

https://prometheus.io/docs/prometheus/latest/querying/basics/
http://man7.org/linux/man-pages/man7/time.7.html

/4/ GELF - Graylog Extended Logging Format
https://docs.graylog.org/en/3.2/pages/gelf.html

/5/ Grafana Documentation
https://grafana.com/docs/grafana/latest/

/6/ Prometheus Federation
https://prometheus.io/docs/prometheus/latest/federation/

Technical Documentation: RBMS User Guides

76

https://docs.graylog.org/en/3.2/pages/gelf.html
https://grafana.com/docs/grafana/latest/
https://prometheus.io/docs/prometheus/latest/federation/

7. Administering RBMS

7.1. Administration

7.1.1. Managing Webhooks

A webhooks is a registered HTTP endpoint that forwards notifications from RBMS
to an external endpoint.

RBMS stores a domain event if a status in RBMS has changed. An event is only
created when the transaction was comitted. An event is not fired when the
transaction rolls back.

The events are grouped in different topics:

• element, the element topic contains all element-related messages

• image, the image topic contains all image-related messages

An event has a descriptive name that describes what state change is being
reported. All events have a unique ID to identify different instances of the same
event unambiguously.

For example, the ElementRenamedEvent informs about an element being renamed.
The event is stored in the element topic.

A webhook subscribes a topic and calls the configured endpoint for all events that
match the specified name filter. By default, the message send to the endpoint
contains the JSON representation of the domain event. An optional template
allows rewriting the event message.

The authentication can be done via HTTP Basic Authorization or bearer token.
RBMS stores the provided credentials AES-protected in the database.

The AES secret and initialization vector (IV) can be specified in the
master.secret and master.iv environment variables.

Technical Documentation: RBMS User Guides

77

Unauthenticated endpoint calls are also supported.

A webhook invocation is considered successful if a HTTP success family status code
is returned. For all other status codes the invocation is considered as failed.

A webhook can retry all failed messages. In addition, a webhook can be reset to a
certain message to process this message and all subsequent messages again.

The complete message processing lifecycle is shown below:

New domain event messages are READY for being processed. The state changes to
IN PROGRESS when the processing has begun and eventually to PROCESSED if the
endpoint processed the message successfully and to FAILED otherwise respectively.

A webhook can be disabled to temporarily suspend the event processing. All
events that occured while the webhook was disabled are processed when the
webhook gets enabled again unless the event got dropped because the topic
buffering capacity was exceeded.

Viewing Webhooks

To view the list of webhooks

1. Click the Administration tab.

2. Click Webhooks in the left navigation pane. The list of all webhooks appear.

3. Click the name of the webhook that you want to view.

Technical Documentation: RBMS User Guides

78

Adding Webhooks

To add a webhook

1. Click the Administration tab.

2. Click Webhooks in the left navigation pane. The list of all webhooks appear.

3. Click Add webhook

4. Specify the general, subscription and authentication information about the
webhook.

5. Click Save webhook.

Disabling a Webhook

To disable a webhook

1. Click the Administration tab.

2. Click Webhooks in the left navigation pane. The list of all webhooks appear.

3. Select the webhook to be disabled.

4. Click Disable webhook.

Enabling a Webhook

To enable a webhook

1. Click the Administration tab.

2. Click Webhooks in the left navigation pane. The list of all webhooks appear.

3. Select the webhook to be enabled.

4. Click Enable webhook.

Reset a Webhook

To reset a webhook

1. Click the Administration tab.

2. Click Webhooks in the left navigation pane. The list of all webhooks appear.

3. Select the webhook to be reset.

Technical Documentation: RBMS User Guides

79

4. Click Message Queue in the left navigation pane. The list of the last 100
processed messages appear.

5. Enter the event ID in the Filter field and click Filter.

6. Open the displayed message.

7. Click Reset webhook to process the message and all subsequent messages
again. The message queue view appears.

Technical Documentation: RBMS User Guides

80

Viewing Webhook Statistics

The webhook statistics provides information about processing times and the
message count grouped by the processing state.

To view the webhook statistics

1. Click the Administration tab.

2. Click Webhooks in the left navigation pane. The list of all webhooks appear.

3. Select the webhook for which to retry the failed invocations.

4. Click Statistics in the left navigation pane. The webhook statistics appear.

Technical Documentation: RBMS User Guides

81

Retrying Failed Webhook Invocations

To retry failed webhook invocations

1. Click the Administration tab.

2. Click Webhooks in the left navigation pane. The list of all webhooks appear.

3. Select the webhook for which to retry the failed invocations.

4. Click Statistics in the left navigation pane. The message statistics appear.

Technical Documentation: RBMS User Guides

82

1. Click Reset failed messages to reset all failed messages to ready state.

7.1.2. Managing Users

This section outlines how to manage users in the RBMS built-in
user repository. If RBMS is connected to an authorization service
the users are configured in the authorization service.

Viewing all existing users

To view all existing users

1. Click the Administration tab.

2. Click Users in the left navigation pane. The list of all existing users appear.

3. Click the name of the user whose details you want to view.

Adding users

You can add a new users to the user repository.

To add a user

1. Click the Administration tab.

2. Click Users in the left navigation pane. The list of all existing users appear.

3. On the Users page, click Add user.

Technical Documentation: RBMS User Guides

83

4. Specify user details such as username, password, and access token.

5. Click Add user.

Removing users

To remove a user

1. Click the Administration tab.

2. Click Users in the left navigation pane. The list of all existing users appear.

3. Click the name of the user whom you want to remove.

4. On the User Settings page, click Remove user.

Resetting Password

To reset a user password

1. Click the Administration tab.

2. Click Users in the left navigation pane. The list of all existing users appear.

3. Click the name of the user whom you want to remove.

4. On the User Settings page, click Reset password. The Reset Password page
appears.

5. Enter the new password.

6. Re-type the new password in order to detect accidental typos.

7. Click Reset Password.

7.1.3. Managing Roles

This section outlines how to manage roles in the RBMS built-in
user repository. If RBMS is connected to an authorization service
the roles are be configured in the authorization service. See
Scopes for more information about the existing acccess scopes.

Viewing list of roles

To view the list of roles

Technical Documentation: RBMS User Guides

84

1. Click the Administration tab.

2. Click Roles in the left navigation pane. The list of all existing users appear.
image::admin_roles.png[]

2. Click the role that you want to view or modify.

7.1.4. Creating Roles

To create a role

1. Click the Administration tab.

2. Click Roles in the left navigation pane. The list of all existing users appear.

3. On the Roles page, click Add role.

4. Specify the details of the new role such as role name, Accessible Resource
Scopes, and description.

5. Click Add role.

Removing roles

To remove a role

1. Click the Administration tab.

2. Click Roles in the left navigation pane. The list of all existing roles appear.

3. Click the role that you want to remove.

4. On the Role <rolename> page, click Remove role.

7.1.5. Managing Access Keys

Viewing list of access keys

To view the list of all existing access keys

1. Click the Administration tab.

2. Click Access Keys in the left navigation pane. The list of all existing access keys
appear.

Technical Documentation: RBMS User Guides

85

3. Click the name of the access key that you want to view or modify.

7.1.6. Creating Access Keys

To create an access key

1. Click the Administration tab.

2. Click Access Keys in the left navigation pane. The list of all existing access keys
appear.

3. On the Access Keys page, click Add access key.

4. Specify the details of the new access key such as key name, scopes, and

Technical Documentation: RBMS User Guides

86

description.

5. Click Create access key.

Revoking an access key

To revoke an access key

1. Click the Administration tab.

2. Click Access Key in the left navigation pane. The list of all existing access keys
appear.

3. Click the access key that you want to revoke.

4. On the <access key name> accesskey page, click Revoke access key.

Validating an access key

The validating access key feature enables you to validate an encoded access key.

To validate an access key

1. Click the Administration tab.

2. Click Access Key Validator in the left navigation pane.

3. In the Access Key text box, enter the access key to be validated.

Technical Documentation: RBMS User Guides

87

4. Click Validate.

Restoring an revoked access key

To restore an accidentally revoked access key

1. Click the Administration tab.

2. Click the Access Key Validator in the left navigation pane.

3. Paste the access key to be restored in the text area.

4. Click Validate.

5. Clicke Restore to restore the revoked access key.

Technical Documentation: RBMS User Guides

88

7.1.7. Scopes

Access to RBMS is granted through an access token. The access token is either
issued by an OAuth2 compliant authorization service or by RBMS itself, depending
on whether RBMS delegates to an authorization service or the RBMS built-in user
repository is used.

The access token conveys the list of scopes the user is allowed to access. The table
below lists all existing scopes:

Scope Description

adm Full access to the RBMS administration
API and UI.

adm.read Readonly access to the RBMS
administration API and UI.

adm.accesskey Full access to the RBMS access key
administration API and UI.

adm.accesskey.read Readonly access to the RBMS access key
administration API and UI.

adm.user Full access to the RBMS user
management API and UI.

adm.user.read Readonly access to te RBMS user
management API and UI.

adm.webhook Full access to the RBMS webhook
management API and UI.

adm.webhook.read Readonly access to the RBMS webhook
management API and UI.

ctrld Full access to all CTRLD actions that can
be triggered from RBMS.

ctrld.reinstall Permission to trigger CTRLD to run ZTP
sequence for an software image
upgrade again.

ctrld.settings Permissions to update the CTRLD
settings on the switch via RBMS.

ivt Full access to the resource inventory.

Technical Documentation: RBMS User Guides

89

ivt.read Readonly access to the resource
inventory.

ivt.element Manage elements in the resource
inventory.

ivt.element.settings Manage element settings in the
resource inventory.

ivt.element.config Manage element configuration in the
resource inventory.

ivt.element.dns Manage element DNS records in the
resource inventory.

ivt.element.module Manage element hardware module
information in the resource inventory.

ivt.group Manage element grouos in the resource
inventory.

ivt.group.settings Manage element group settings in the
resource inventory.

ivt.image Manage software images in the
resource inventory.

ivt.rack Manage racks in the resource inventory.

job Full access to the RBMS job API and UI.

job.read Readonly access to the RBMS job API
and UI

job.task Manage job tasks via RBMS Job API or
UI.

tmy Full access to the RBMS metric API and
UI.

tmy.read Readonly access to the RBMS metric API
and UI.

tmy.metrics Full access to manage RBMS metrics.

tmy.metrics.read Readonly access to metrics.

Scopes are cumulative by convention. For example, the ivt.elment
scope includes the ivt.element.settings scope.

Technical Documentation: RBMS User Guides

90

For UI access always grant the read scope in combination with a
specific write scope to avoid trouble. For example, grant
ivt.element.settings in combination with ivt.read. Otherwise a user
might not be able to navigate to the view to apply the changes.

7.2. Managing Jobs

RBMS includes a job scheduler used by the network management applications to
run management jobs. A job is a set of tasks that are executed in a specified order.

The task execution flow is defined by the application creating the job. Tasks can be
executed sequentially or in parallel. Parallel execution flows can be joined to
continue with a single flow. Technically speaking a job is described as state engine.
Each task represents a node in the the state engine. The transition between tasks
form the execution flow.

The figure below shows a simplified execution flow for a fabric upgrade.

The Pre-Upgrade Check task runs all checks to test whether the fabric can be
upgraded. If the fabric passes all checks the execution flow is splitted to run the
Spine 1 Upgrade and Spine 2 Upgrade in parallel. The Post-Upgrade Check waits for
both upgrades to be completed before it runs the checks to test whether the
upgrade was successful. If both switche upgrades were successful the job
upgrades the two remaining switches in parallel. Finally another Post-Uograde
Check is executed to check whether the upgrade was successful.

An application can program a job task to wait for an explicit confirmation. For
example, an operator might want to inspect the state of a switch when a new
image has been installed the very first time in the network. The upgrade
application can program the first post-upgrade check to wait for confirmation
before proceeding with the next upgrade.

Technical Documentation: RBMS User Guides

91

The job module is a generic job viewer to inspect the state and progress of
scheduled jobs. It also allows to confirm that a job can continue.

7.2.1. Viewing job list

To view the list of jobs

1. Click the Jobs tab. The list of currently active or scheduled jobs appear.

2. Optinally filter the job list by job name. The job name can be specied as prefix,
full name of regular expression.

7.2.2. Viewing job task list

To view the list of job tasks

1. Click the Jobs tab. The list of currently active or scheduled jobs appear.

2. Click the name of the job that you want to view. The Job Tasks page appears.

Technical Documentation: RBMS User Guides

92

7.2.3. Viewing task flow

The task flow enables you to inspect taskflow and progress of the selected task.

To view the list of task flow

1. Click the Jobs tab. The list of currently active or scheduled jobs appear.

2. Click the name of the job that you want to view.

3. Click Flow in the left navigation pane. The Taskflow page appears.

Technical Documentation: RBMS User Guides

93

7.2.4. Viewing task details

To view the task details

1. Click the Jobs tab. The list of currently active or scheduled jobs appear.

2. Click the name of the job that you want to view. The Job Tasks page appears.

3. Click the name of the task that you want to view. The Job Task page appears.

Technical Documentation: RBMS User Guides

94

7.2.5. Canceling a Job

To cancel a job

1. Click the Jobs tab. The list of currently active or scheduled jobs appear.

2. Click the name of the job that you want to view.

3. Click Tasks in the left navigation pane. The Job Tasks page appears.

4. Click Cancel job. The job state changes to cancelled.

Technical Documentation: RBMS User Guides

95

7.2.6. Removing a Job

To remove a completed, cancelled or failed job

1. Click the Jobs tab. The list of currently active or scheduled jobs appear.

2. Click the name of the job that you want to view.

3. Click Tasks in the left navigation pane. The Job Tasks page appears.

4. Click Remove. A confirmation dialog is displayed.

5. Click Confirm to remove the job.

7.2.7. Configuring Job Settings

To configure the job settings

1. Click the Jobs tab. The list of currently active or scheduled jobs appear.

2. Click the name of the job that you want to configure.

Technical Documentation: RBMS User Guides

96

3. Make necessary configurations for the job.

4. Click Save settings.

Technical Documentation: RBMS User Guides

97

8. RBMS Configuration Store
The RBMS resource inventory includes a configuration store to maintain switch
configurations. The configuration store can store an arbitrary number of
configurations per switch and provides a history of up to 50 revisions for each
configuration.

RBFS stores the active configuration in RBMS after every configuration change.

The figure below shows the configuration lifecycle.

A new configuration is considered a candidate configuration. A candidate
configuration turns into the active configuration when being applied to the switch.
The previously activate configuration is marked as superseded at the same time. A
superseded configuration can be restored by creating a new candidate
configuration from it and applying the candidate configuration again. Candidate
and superseded configurations can be removed from the configuration store. The
active configuration cannot be deleted.

RBMS provides means to create or upload new configurations and apply them to
the switch. In addition, RBMS UI allows inspecting configuration changes in the
configuration history.

8.1. Creating a new candidate configuration

8.1.1. Uploading a candidate configuration

The simplest way to add a new candidate configuration is to upload a new
configuration to the configuration store.

To upload a new candidate configuration

Technical Documentation: RBMS User Guides

98

1. Click the Inventory tab.

2. Click Elements in the left navigation pane. The element list appears.

3. Click the element name for which you want to upload a new configuration.

4. Click Configuration in the left navigation pane. The configurations list appears.

5. Click Add configuration. The New Configuration page appears.

Technical Documentation: RBMS User Guides

99

6. Drop a configuration file onto the dashed area or click Select configuration
file to open the file dialog to select a file.

7. Review the configuration in the preview.

Technical Documentation: RBMS User Guides

100

8. In Configuration Name, enter the switch configuration name. By default the
configuration name is taken from the file name.

9. Check whether the selected Content Type is correct.

10. Optionally comment the configuration.

11. Click Save configuration to add the candidate configuration.

Technical Documentation: RBMS User Guides

101

RBMS either creates a new candidate configuration or updates an existing
candidate configuration if a candidate configuration for the specified configuration
name exists. The complete flow is illustrated below:

8.1.2. Generating a candidate configuration

RBMS includes a template engine to generate switch configurations. The
configuration templates are designed based on your conventions for building a

Technical Documentation: RBMS User Guides

102

fabric and then added to the template engine. The templates need to be registered
in RBMS to make them eligible for execution. RBMS passes the following
information to the template engine:

• the general element settings

• the software image to be installed on the switch and

• all registered environments

RBMS can store an arbitrary set of environments per element. An environment is a
JSON object containing parameters processed in the template. The structure and
number of environments is defined by the template author.

The figure below shows the configuration generation flow:

1. The operator triggers the switch configuration generation in RBMS.

2. RBMS loads the element settings, environments and image information from
the resource inventory.

3. RBMS discovers the templates eligible for the selected switch.

4. RBMS invokes the template engine for each discovered template.

5. RBMS stores the generated configuration as candidate configuration in the
configuration store.

Technical Documentation: RBMS User Guides

103

Template registration

The template registration maintains the list of templates available in the template
engine.

Say you have three different templates:

• ztp.gojson generates the ZTP configuration snippet for a switch.

• leaf-running-configuration.gojson generates the running-configuration of a leaf
switch.

• spine-running-configuraton.gojson generates the running-configuration of a
spine switch.

All templates need to be registered in RBMS to get executed when the switch
configuration is genereated.

To register a new template

1. Click the Inventory tab.

2. Click + to expand the Administration menu.

3. Click Templates in the left navigatio pane. The template list appears. ZTP and
spine templates are already registered.

4. Click Add template to register the leaf template.

Technical Documentation: RBMS User Guides

104

5. In Template Name, enter leaf-running-configuration.

The template name in RBMS matches the template folder name in
the template engine. See the template engine guide for more
details.

6. In Configuration Name, enter running-configuration since the template
generates the running-configuration for a switch.

7. In Element Roles, select accessleaf to bind the template to accessleaf switches.

Technical Documentation: RBMS User Guides

105

8. In Description, optionally describe the template and the generated
configuration.

9. Click Save template. The template list appears. The new template is listed.

Environment management

Adding a new environment

To add a new environment

1. Click Environments in the left navigation pane. The list of environment
appears.

2. Click Add environment. The New Environment view appears.

Technical Documentation: RBMS User Guides

106

3. In Environment Name enter the name of this environment.

4. In Category enter RBFS.

 Only RBFS environments are processed by the template engine.

5. In Type enter an optional type or schema information of the environment.

6. In Description enter an optional environment description.

7. Enter the environment variables in the displayed JSON editor or click Upload
new environment to upload a JSON file.

8. Click Add environment to add a new environment.

Editing an environment

To update an existing environment

Technical Documentation: RBMS User Guides

107

1. Click Environments in the left navigation pane. The list of environment
appears.

2. Click the name of the environment you want to edit.

3. Apply the modifications to the environment.

4. Click Save environment to save the environment.

Removing an environment

To remove an environment

1. Click Environments in the left navigation pane. The list of environment
appears.

2. Click the name of the environment you want to remove.

3. Click Remove environment. A confirmation dialog is displayed.

4. Click Confirm to remove the environment.

Configuration generation

To generate a configuration

1. Click Actions in the left navigation pane.

Technical Documentation: RBMS User Guides

108

2. Click Generate configurations. RBMS schedules a configuration generation
job. The job contains a task for each configuration and invokes the template
engine to create the configuration.

Technical Documentation: RBMS User Guides

109

The generated configurations are stored as new candidate
configurations.

To review the generated configuration

1. Click Configuration in the left navigation pane. The configuration list shows
new candidate configurations.

Technical Documentation: RBMS User Guides

110

2. Click the timestamp of the generated configuration to show the configuration
content. Click the configuration name to display the configuration history.

8.2. Review configuration history

To review configuration changes in the configuration history

1. Click the Inventory tab. The list of pods appears.

2. Click Element in the left navigation pane. The element list appears.

3. In Filter enter the name of the switch and click Filter. The list of matching
elements appears.

Technical Documentation: RBMS User Guides

111

4. Click the element name for which you want to inspect configuration changes.
The element settings appears.

5. Click Configurations. The list of configurations appears.

6. Click the configuration name. The configuration history appears.

7. Select the two configurations you want to compare and click the Compare
button. The diff viewer appears.

Technical Documentation: RBMS User Guides

112

The diff viewer shows both configurations and the diff if you scroll down.

Technical Documentation: RBMS User Guides

113

9. RBMS Template Engine
The RBMS Template Engine is an execution engine for templates. A folder in the
filesystem serves as template storage for the engine. The content of the folder
follows a convention.

9.1. Template Folder structure
Template folder structure

templates
 |-- includes
 | |-- <include-template>.gojson
 |-- <template name>
 |-- config.yaml
 |-- <include-template>.gojson
 |-- <main-template>.gojson

The template engine uses one templates folder where all the templates are stored.
Each template resides in his own folder, the folder name is the template name.
The config.yaml file inside a template folder indicates that this folder is a template.
In this file also other configurations for the template engine can be made.

The template folder contains one main-template and can contain multiple `include-
templates. The include-templates can be included into the main template.

Folders that don’t contain a config.yaml are not treated as templates. This folders
can be used as containers for other include-template files.

9.2. Template config

This section describes the config.yaml file. Image this folder structure for the next
examples.

Simple example folder structure

templates
|-- includes
| |-- global_include.gojson
|-- sample
 |-- config.yaml
 |-- local_include.gojson
 |-- main.gojson

Technical Documentation: RBMS User Guides

114

Here there is a main-template which includes the local_include-template and the
global_include-template. The config.yaml is used by the template engine to parse
the right files, so that the include-directives work.

templates/sample/config.yaml

engine: golang
main_template: "main.gojson"
main_pattern: "*.gojson"
include_pattern: "includes/*.gojson"
post_processors:
 - removeTrailingCommas
 - prettyJSON

config.yaml attributes

Attribute Default Description

engine golang selects the template engine, at the moment only
golang is supported

main_templ
ate

none points to the entrypoint of the rendering process, this
template is used as the top most, it hast to be
included in the main pattern.

main_patter
n

none describes which files the engine should parse from
the template folder.

include_patt
ern

none describes which files the engine should additionally
parse relative to the templates folder.

post_proces
sors

none allows to specify post processors that are used in that
order on top of the generated output.

Post processors

Attribute Description

removeTrailing
Commas

removes in json files the commas which are not valid, this makes
the template much easier

removeEmptyLi
nes

removes empty lines

prettyJSON Pretty converts the input json into a more human readable
format where each element is on it’s own line with clear
indentation

Technical Documentation: RBMS User Guides

115

Attribute Description

uglyJSON Ugly removes insignificant space characters from the input json
byte slice and returns the compacted result.

9.3. GO Lang Template Engine

The default engine is the golang template engine. This gives some links to more
detailed information.

The GO Lange template engine is based on:

• GoLang test template
The golang text template engine. This allows evaluating arguments, execute
actions and include other templates.

• sprig functions
Beside of the default functions golang already provides, the sprig function
library is added to the engine.

9.4. Example

This section shows a simple example, that covers a lot of functionality of the
templates.

The example uses the following folder structure. Each file will be described in more
detail.

Full example folder structure

templates
|-- includes
| |-- global_include.gojson
|-- sample
 |-- config.yaml
 |-- example_variables.json
 |-- local_include.gojson
 |-- main.gojson

The template is called sample, because there is a config.yaml in the folder sample.

templates/sample/config.yaml

engine: golang
main_template: "main.gojson"
main_pattern: "*.gojson"

Technical Documentation: RBMS User Guides

116

https://golang.org/pkg/text/template/
http://masterminds.github.io/sprig/

include_pattern: "includes/*.gojson"
post_processors:
 - removeTrailingCommas
 - prettyJSON

The config.yaml file states that the main_template is called main.gojson, so thats
the entrypoint for the generation.

The main_pattern defines this files templates/sample/*.gojson should be parsed
into the template engine, so also the main_pattern is included.

The include_patterns defines this files templates/includes/*.gojson should be
parsed into the template engine.

The post_processors are used to remove the trailing commas and make the JSON
output more readable.

Let’s expect the following example variables structure.

templates/sample/example_variables.json

{
 "description": "sample",
 "interfaces": [
 {
 "name": "ifp_0/0/1",
 "ipv4": "127.0.0.1",
 "x": 5,
 "y": 3
 }, {
 "name": "ifp_0/0/2",
 "ipv4": "127.0.0.2",
 "x": 4,
 "y": 4
 }
]
}

The this variables can be used to fill a template.

templates/sample/main.gojson

{{define "t1"}}
 "hostname": "static",
{{end}}
{
 {{template "t1"}}
 "description": "{{.description}}",
 "interfaces": {
 {{template "local_include.gojson" .interfaces}}
 },
 "list": {{template "global_include.gojson" .}}

Technical Documentation: RBMS User Guides

117

}

This templates starts with a definition of a new template t1 that will be used in this
template.

This template t1 is included immediately after {.

Then the description is added, the selection from the variable is done via the
.description.

For the interfaces we use the local template local_include.gojson, the variables that
are forwarded to the template are the .interfaces so only the array of the original
variable set.

To render the list we include the global_include.gojson template and forward the
original variable set.

templates/sample/local_include.gojson

{{range .}}
"{{.name}}": {
 "ip": "{{.ipv4}}",
 "1000/x*y": {{div 10000 (mul .x .y) }},
},
{{end}}

The local_include.gojson iterates over the interfaces list and prints the name and
ip-address of the interface.

Also a simple computation is done by using the sprig functions div and mul.

templates/includes/global_include.gojson

[
{{range .interfaces}}"{{.name}}",{{end}}
]

The global_include.gojson iterates over the interfaces list and prints in an array.

This json template does not create a valid json. The commas are
not set correct. The document is not well formatted. Therefore it is
easier to create the templates. To create a syntactically correct
and well formatted document we use post processors. The syntax
is corrected by removeTrailingCommas` post processor. The
format is corrected by the prettyJSON post processor.

Technical Documentation: RBMS User Guides

118

http://masterminds.github.io/sprig/

The next source block shows the expected outcome when applying the variables
from above to the template.

templates/sample/example_result.json

{
 "description": "sample",
 "hostname": "static",
 "interfaces": {
 "ifp_0/0/1": {
 "1000/x*y": 666,
 "ip": "127.0.0.1"
 },
 "ifp_0/0/2": {
 "1000/x*y": 625,
 "ip": "127.0.0.2"
 }
 },
 "list": [
 "ifp_0/0/1",
 "ifp_0/0/2"
]
}

9.5. TestKit

In order to do a fast template prototyping we developed a test kit. The test kit
allows to execute a template with a given variable set and validate the outcome
against an expected result.

To execute we have to specify:

• templatePath: Template main folder (default ".")

• template: Template name

• format: File format [txt, json, json5] (default "txt")

So for example if we execute template-engine-test -template sample -test example
-format json inside the templates folder, this command will execute the sample
template with the content of the example_variables.json file as input variables.
After execution the outcome is stored in the example_got.json file, and validated
against the example_result.json file. The format not only specifies the file endings,
it also specifies how the validation is done. So for example the json format does
not care about ordering of whitespace differences.

Technical Documentation: RBMS User Guides

119

10. Auto-DNS Provisioning

10.1. DNS Introduction

The Domain Name Service (DNS) assigns names to IP addresses of network
resources such as hosts, routers, or services. Names are easier to memorize than
IP addresses, especially when intuitive naming conventions have been established.
Moreover, hostnames form the common name (CN) of a certificate and are needed
to issue valid certificates in order to enable Transport Layer Security (TLS).

The management system keeps track of what elements exist in the network.
Consequently, the management system shall be connected to the DNS such that
DNS records are updated automatically whenever needed. This document
discusses how to connect the management system to a DNS infrastructure.

10.1.1. Supported Platforms

Not all features are necessarily supported on each hardware platform. Refer to the
Platform Guide for the features and the sub-features that are or are not supported
by each platform.

10.2. DNS Overview

Figure 1 gives an overview of the network management system. The resource
inventory forms a cornerstone of the network management system and maintains
inventory records for all elements installed in the network. Operation support
systems (OSS) or the element itself feed the resource inventory with data. The
resource inventory issues a domain event whenever the state of an inventory
record has changed.

Technical Documentation: RBMS User Guides

120

The DNS Naming Service subscribes all domain events that have an effect on the
DNS name of an element and updates the DNS name accordingly. The DNS
connector subscribes domain events related to DNS name changes and invokes
the REST-API of the DNS infrastructure to update the DNS records. The focus of
this document is the contract between the DNS Connector and the management
system.

10.2.1. Terms and Definitions

Element

An element represents either a physical or a virtual resource in the network. For
example, the switches forming the fabric are physical resources whereas a virtual
machine on a compute node is a virtual resource. DNS records are created for
elements, but not necessarily every element requires a DNS record.

Element Role

The element role describes the function of an element in the network. Leaf switch,

Technical Documentation: RBMS User Guides

121

Spine switch and OLT are examples of element roles.

PoD

The Point of Distribution aggregates all subscribers of a geographic region and
connects them to the core network.

Resource Inventory

The resource inventory stores all elements, including their role, configuration,
resources, capabilities, operational and administrative state. It also allows to group
elements.

The resource inventory is fed by planning processes, which add planned elements
to the inventory, and all active elements, which register themselves in the resource
inventory and report configuration or operational state changes to the resource
inventory.

Domain Event

A domain event describes a change that has taken place in the resource inventory.
The domain event contains the information of what has changed as well as the
identifiers needed to read additional information from the resource inventory.

Operation Support System (OSS)

The Operation Support System supports to control, monitor, manage and plan the
network.

Management System

The management system allows the execution of management functions on the
elements forming the network and inspects the configuration and operational
state of an element.

DNS Naming Service

The DNS naming service assigns DNS names to all elements in the resource
inventory that are supposed to have a DNS name.

Technical Documentation: RBMS User Guides

122

Resource Record and Resource Record Set

A resource record is the basic DNS configuration entity. The resource record set
contains all resource records related to the same DNS name.

DNS Connector

The DNS connector creates resource record sets from all assigned DNS names.

10.3. DNS Record Management

10.3.1. DNS Naming Convention

A sophisticated DNS naming convention leads to intuitive and concise names and
supports the use of wildcard certificates, which in turn simplifies certificate
management.

The prerequisite to creating a DNS naming convention is to decide which element
roles and services require a DNS name.

Forward DNS Lookup

This section summarizes DNS aspects of common element management patterns
briefly, without discussing the advantages and disadvantages of each management
pattern in general. A sustainable DNS provisioning solution must support all
common management patterns.

Out-of-Band Management

Out-of-Band management establishes a dedicated management network to
manage the network elements. Each element is connected via the management
interface to this network. The management system also needs to be connected to
the management network to access the network elements.

Technical Documentation: RBMS User Guides

123

Figure 8. Schematic illustration of the out-of-band management pattern

The DNS lookup resolves the IP address of the management interface.

In-Band Management

In-band management leverages the transport network, which conveys the
customer traffic, and also for network management.

Technical Documentation: RBMS User Guides

124

Figure 9. Schematic illustration of the in-band management pattern

The DNS lookup resolves the transport layer loopback IP address for all elements
connected with more than one interface to the transport network. For elements
with a single connection to the transport network, the IP address assigned to this
interface is resolved.

API Gateway

An API gateway forms a single entry point to access multiple elements. The
management system interfaces with the API gateway and the API gateway
forwards the API call to the appropriate element. The API gateway is either
accessed in-band or out-of-band.

Technical Documentation: RBMS User Guides

125

Figure 10. Schematic illustration of the API gateway pattern

The API gateway addresses non-functional requirements such as TLS termination,
authentication and authorization.

Many instances of an API gateway are typically started at the same time to avoid
creating a single point of failure. All instances are accessible through the same IP
address, the cluster IP address. Consequently, the API Gateway DNS name resolves
the cluster IP address. Additional DNS records per gateway instance are required
to access a gateway instance for troubleshooting.

The management system needs to know the REST API endpoint URL for every
element. The REST API invocation is the same for all management patterns
outlined before. A management process reads the REST API endpoint from the
element record in the resource inventory to invoke the API. Looking at the API
gateway pattern, an element does not have to have a DNS name despite providing
a REST API endpoint.

Reverse DNS Lookup

A reverse DNS lookup discovers the hostname for a given IP address. Reverse DNS
lookups are handy for troubleshooting as they translate an IP address to a human-

Technical Documentation: RBMS User Guides

126

friendly name. Consequently, a hostname needs to be assigned to the transport
layer loopback IP address or the IP address of the interface connected to the
transport network respectively.

DNS Naming Service

The DNS naming service implements the DNS naming convention and assigns a
DNS name to all elements that are supposed to have a DNS name.

DNS Naming Service is beyond the scope of this document as it
depends on the DNS Naming Convention.

The resource inventory will be enhanced to store zero, one or more DNS records
per element as illustrated below. The DNS Naming Service maintains the DNS
records per element.

Figure 11. Relation between element and DNS record

A DNS record basically consists of:

• DNS name

• IPv4/v6 address

• status flag indicating whether the DNS record is enabled

• creation date and last modification date and

• an optional expiry date (defaults to never expire)

The resource inventory fires a domain event when a DNS record set has been
added, modified or removed (DnsRecordSetModifiedEvent).

The following information is conveyed with a DNS record domain event:

• event_id - the event ID in UUIDv4 format.

• event_name - the event name (DnsRecordSetModifiedEvent).

• group_id - the element group ID in UUIDv4 format

Technical Documentation: RBMS User Guides

127

• group_type - the element group type (set to pod)

• group_name - the element group name

• element_id - the ID, in UUIDv4 format, of the element whose DNS name has
been modified

• element_name - the name of the element whose DNS name has been
modified

• element_alias - an optional alias of the element whose DNS name has been
modified. This property is omitted if no alias has been set.

• element_role - the role of the element whose DNS name has been modified

• group_id - the ID of the group the element is a member of

• group_name - the name of the group the element is a member of

• group_type - the type of the group the element is a member of, which is
always set to pod

• dns_recordset - the DNS record set

◦ dns_zone_id - the DNS zone ID in UUIDv4 format of the DNS zone in the
resource inventory.

◦ dns_zone_name - the canonical DNS zone name

◦ dns_name - the canonical DNS name that shall be stored in the DNS

◦ dns_ttl - the optional time-to-live for the DNS record (in seconds).

◦ dns_withdrawn_name - the DNS name that shall be removed from the
DNS

◦ dns_type - the DNS record type (e.g. A, AAAA, CNAME)

◦ dns_record - the array of DNS records

▪ dns_value - the DNS record value (e.g. IPv4 address, IPv6 address, alias)

▪ dns_setptr - a flag indicating whether to create a PTR record

▪ disabled - a flag indicating whether this record is disabled

In addition, the resource inventory fires an event if a DNS zone was added
(DnsZoneCreatedEvent) or removed (DnsZoneRemovedEvent). A DNS zone
event merely contains the zone ID and canonical DNS zone name:

• event_id - the event ID in UUIDv4 format.

Technical Documentation: RBMS User Guides

128

• event_name - the event name (DnsZoneCreatedEvent or
DnsZoneRemovedEvent).

• dns_zone - the DNS zone that was subject to the reported change

◦ dns_zone_id - the DNS zone ID in UUIDv4 format of the DNS zone in the
resource inventory.

◦ dns_zone_name - the canonical DNS zone name

DNS Connector

The DNS Connector subscribes to the DNS domain events outlined before using
providing a REST API endpoint that accepts HTTP POST requests with the domain
event as a requesting entity. The DNS connector creates and removes DNS zones
according to the DNS zone events and translates the DNS record set domain event
to resource record sets using the following semantics:

• Store a resource record set in the DNS if the dns_name property is present.
The dns_name property value becomes the resource record set name. The
resource record set contains up to two resource records: a type A record for
the IPv4 address and another type AAAA record for the IPv6 address. The
connector derives the time-to-live (TTL) of the resource record set from the
expiry date. The TTL is omitted if no expiry date has been specified.

• Remove a resource record set from the DNS if the dns_withdrawn_name
property is present. The dns_withdrawn_name property contains the name of
the resource record set to be removed.

The DNS Connector uses the REST API provided by PowerDNS, an open-source
DNS server, to maintain the DNS records. PowerDNS can either be configured as a
DNS server or merely acts as a gateway and forwards all DNS changes to the actual
DNS service.

Figure 6 illustrates the DNS records provisioning flow.

Technical Documentation: RBMS User Guides

129

Figure 12. DNS Resource Record Set provisioning flow

The DNS records are stored in the resource inventory and maintained by the DNS
Naming Service application or manually through the user interface. All DNS record
changes fire an event, which is stored in the Domain Event Queue. The domain
even queue is a persistent and transactional queue, which means that domain
events are stored for successfully committed transactions only. A webhook, which
is a configurable service, forwards all DNS events to the DNS connector, which in
turn maintains the resource records sets (RRs) in PowerDNS.

10.3.2. Sample Fabric DNS Naming Convention

This section introduces a sample fabric DNS naming convention. The DNS name
tree is depicted below.

Technical Documentation: RBMS User Guides

130

Figure 13. Sample DNS naming convention

The <network-domain> is the base domain name for the entire network (e.g.
lab.rtbrick.net for the RtBrick lab environment). The next level of the DNS tree
differentiates between central management services (mgmt) and pods (pod). Every
management service has a designated DNS name. Every element in a pod has a
designated DNS name too. Moreover, certain interfaces (for example, the
management interface) or services deployed on an element might also get a DNS
name assigned.

The network diagram below illustrates a lab topology that consists of two pod
fabrics, Bangalore and Nuremberg, each formed by four switches and managed by
a fabric daemon as well as a central management system. The central
management system consists of three services: the control center to manage the
network, the log management system to query log messages and process alerts,
and the telemetry management system to process and visualize metrics. Each
switch has a unique router ID, which is equal to the transport layer loopback IP
address, a management interface and runs the control daemon (ctrld) to manage
the switch.

Technical Documentation: RBMS User Guides

131

Figure 14. Sample network topology

The table below lists samples DNS names of elements and services in the sample
network topology:

Sample DNS names

DNS Name Description

lab.rtbrick.net Network domain forming the top-level domain
for all elements in the network

mgmt.lab.rtbrick.net Subdomain for all management services in the
network.

leitstand.lab.rtbrick.net Control center service name.

log.lab.rtbrick.net Log management service name.

telemetry.lab.rtbrick.net Telemetry management service name.

pod.lab.rtbrick.net Subdomain for all pods and their respective
elements.

blr.pod.lab.rtbrick.net Subdomain for all elements and services in pod
Bangalore (BLR)

nbg.pod.lab.rtbrick.net Subdomain for all elements and services in pod
Nürnberg (NBG).

Technical Documentation: RBMS User Guides

132

DNS Name Description

fabric.blr.pod.lab.rtbrick.net Name of fabric in pod Bangalore (BLR)

l1.blr.pod.lab.rtbrick.net Name of leaf 1 in pod Bangalore (BLR). This
name resolves to the transport layer loopback IP
address.

me0.1.blr.pod.lab.rtbrick.net Name of the management interface of leaf 1 in
pod Bangalore (BLR). This name resolves to the
IP address assigned to the management
interface.

ctrld.l1.blr.pod.lab.rtbrick.net An alias to access the control daemon of leaf 1 in
pod Bangalore. In the case of in-band
management, the name is an alias of
leaf1.blr.pod.lab.rtbrick.net whereas for out-of-
band management the name is an alias for the
management me0.leaf1.blr.pod.lab.rtbrick.net

All remaining leaf and spine switches have similar names. Below is another
example for spine 2 located in pod Nürrnberg (nbg)

s2.nbg.pod.lab.rtbrick.net Name of spine 2 in pod Nürnberg (NBG). This
name resolves to the transport layer loopback IP
address.

me0.s2.nbg.pod.lab.rtbrick.net Name of the management interface of spine 2 in
pod Nürnberg (NBG). This name resolves to the
IP address assigned to the management
interface.

ctrld.s2.nbg.pod.lab.rtbrick.net An alias to access the control daemon of spine 2
in pod Bangalore. In the case of in-band
management, the name is an alias of
spine2.nbg.pod.lab.rtbrick.net whereas for out-
of-band management the name is an alias for
the management
me0.spine2.nbg.pod.lab.rtbrick.net

The Domain Naming Service subscribes the following domain events in order to
maintain the DNS names according to this naming scheme:

Domain Events subscribed by DNS Naming Service in order to maintain DNS records

Technical Documentation: RBMS User Guides

133

Domain Event Action

ElementAddedEvent Create DNS records for the added element.

ElementRenamedEvent Update the DNS records for the renamed
element.

ElementMovedEvent Update the DNS records for the moved element,
i.e. the element is now in a different pod.

ElementRetiredEvent /
ElementRemovedEvent

Remove the DNS records of a retired or
removed element. An element must be in the
retired state before it can be removed from the
inventory. A retired element is inactive and kept
in the repository for documentation purposes
only. It depends on whether the DNS record
shall be part of the documentation, and whether
the records are removed when an element is
retired or gets removed from the inventory.

ElementIflAddedEvent Update the DNS record of an element if the
management interface or transport layer
loopback interface was added

ElementIflModifiedEvent Update the DNS record of an element if the
management interface or transport layer
loopback interface IP address has changed

ElementIflRemovedEvent Update the DNS record of an element if the
management interface or transport layer
loopback interface was removed

PodRenamedEvent Update the DNS records for all elements in the
pod.

Technical Documentation: RBMS User Guides

134

Registered Address Support Sales

40268, Dolerita Avenue
Fremont CA 94539

+1-650-351-2251 +91 80 4850 5445

http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2024 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick’s Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

Technical Documentation: RBMS User Guides

135

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

	Technical Documentation: RBMS User Guides
	Table of Contents
	1. RBMS Overview
	1.1. System Architecture

	2. Managing Inventory
	2.1. Introduction
	2.2. Data model
	2.2.1. Element, element role and platform
	2.2.2. Image
	2.2.3. Element Group
	2.2.4. Facility and racks

	2.3. Managing Pods
	2.3.1. Filtering Pod list by Pod name
	2.3.2. Creating Pods
	2.3.3. Modifying Pod settings
	2.3.4. Removing Pods
	2.3.5. Viewing Pod location
	2.3.6. Describing Pod racks
	2.3.7. Adding element to Pod
	2.3.8. Listing elements of a Pod
	2.3.9. Viewing Link State Graph
	2.3.10. Viewing Pod Topology

	2.4. Managing Elements
	2.4.1. Assigning roles to elements

	2.5. Viewing Physical Interfaces
	2.6. Managing Facilities
	2.7. Viewing list of facilities
	2.7.1. Creating a Facility

	2.8. Managing Racks
	2.8.1. Creating a Rack

	2.9. Managing DNS Zones
	2.9.1. Creating a DNS Zone

	2.10. Inventory Administration
	2.10.1. Managing element platforms
	2.10.2. Managing Element Roles
	2.10.3. Managing Templates

	3. Managing Software Images
	3.1. Viewing all registered images
	3.1.1. Viewing image details
	3.1.2. Updating image metadata

	3.2. Image Lifecycle Management

	4. Managing Logs
	4.1. Introduction
	4.2. Viewing log events
	4.3. Filtering log events

	5. Metric Management
	5.1. Overview
	5.2. Working with metrics
	5.2.1. Viewing metrics
	5.2.2. Enabling a metric
	5.2.3. Disabling a metric
	5.2.4. Viewing element dashboards

	5.3. Managing metrics
	5.3.1. Adding a new metric
	5.3.2. Removing a metric

	5.4. Managing dashboards
	5.4.1. Registering Dashboards
	5.4.2. Support for other visualization platforms

	6. Metric Sampling and Monitoring
	6.1. Metric sampling Overview
	6.1.1. BDS as Single Point of Truth
	6.1.2. Metric Types
	6.1.3. Metric Labels
	6.1.4. Sampling Rate and Retention Period
	6.1.5. Metric Monitoring

	6.2. Temperature Monitoring
	6.2.1. Sampling Temperature Sensors
	6.2.2. Querying the Chassis Temperature
	6.2.3. Monitoring Temperature Values

	6.3. CPU Utilization
	6.3.1. Sampling CPU Counters
	6.3.2. Computing Total CPU Utilization From Counter Samples
	6.3.3. Sampling Process CPU Counters
	6.3.4. Computing Process CPU Utilization From Counter Samples

	6.4. PPPoE Session Count
	6.5. Count of Received IPv4 Unicast Prefixes
	6.6. Metric Management
	6.7. Grafana Dashboards
	6.8. Summary
	6.9. References

	7. Administering RBMS
	7.1. Administration
	7.1.1. Managing Webhooks
	7.1.2. Managing Users
	7.1.3. Managing Roles
	7.1.4. Creating Roles
	7.1.5. Managing Access Keys
	7.1.6. Creating Access Keys
	7.1.7. Scopes

	7.2. Managing Jobs
	7.2.1. Viewing job list
	7.2.2. Viewing job task list
	7.2.3. Viewing task flow
	7.2.4. Viewing task details
	7.2.5. Canceling a Job
	7.2.6. Removing a Job
	7.2.7. Configuring Job Settings

	8. RBMS Configuration Store
	8.1. Creating a new candidate configuration
	8.1.1. Uploading a candidate configuration
	8.1.2. Generating a candidate configuration

	8.2. Review configuration history

	9. RBMS Template Engine
	9.1. Template Folder structure
	9.2. Template config
	9.3. GO Lang Template Engine
	9.4. Example
	9.5. TestKit

	10. Auto-DNS Provisioning
	10.1. DNS Introduction
	10.1.1. Supported Platforms

	10.2. DNS Overview
	10.2.1. Terms and Definitions

	10.3. DNS Record Management
	10.3.1. DNS Naming Convention
	10.3.2. Sample Fabric DNS Naming Convention

