
API References
Version 23.8.1, 12 September 2023

Table of Contents
1. RBFS API User Guide . 1

1.1. RBFS REST APIs . 1

1.2. Functions and Use cases of RBFS REST APIs . 3

1.3. Configurations . 4

1.4. Business Events . 12

1.5. Related Documentation . 18

2. RBFS APIs . 19

3. RBMS APIs. 20

1. RBFS API User Guide

1.1. RBFS REST APIs

This document contains all the information about RBFS REST API services, their
purposes and how to use these APIs. This documentation goes hand-in-hand with
the RBFS OpenAPI Specification document which provides information about all
RBFS REST API endpoints. It is recommended to refer to this document in
conjunction with the RBFS OpenAPI Specification document.

Introduction to RBFS REST APIs

RBFS REST APIs allow customers and partners to programmatically access
information from the RBFS software components. RBFS REST APIs enable users to
manage and automate many of their tasks by accessing and consuming the RBFS
data simply and securely.

RBFS REST API architecture supports containerized deployments with a centralized
configuration and management. It also enables the configuration and
management of distinct daemons and services.

RBFS APIs adhere to the Representational State Transfer (REST) principles. RBFS
APIs enable network administrators to securely connect to the RBFS device and
execute remote procedure calls (rpc commands). RBFS REST APIs use JavaScript
Object Notation (JSON) for the exchange of information. The OpenAPI Specification
format, which is a broadly accepted industry standard for describing REST APIs, is
used to describe, consume, and visualize RBFS REST APIs.

Understanding RBFS APIs

RBFS, a disaggregated Broadband Network Gateway, uses many underlying APIs to
make all communications possible with various RBFS software components, the
host operating system (ONL), and the hardware platform. RBFS consists of several
independent microservices including the API Gateway daemon (ApiGwD) and
Control daemon (CtrlD). Both of these microservices, known as daemons, play
crucial roles in managing RBFS instances.

The architecture of the RBFS requires all API requests from external clients to be
routed to the API Gateway. After successful authentication by the API Gateway,

Technical Documentation: API References

1

https://documents.rtbrick.com/current/api/api/index-rbfs-api.html

these requests are forwarded to the Control daemon. CtrlD, which is aware of the
state and port information of all daemons that reside of the RBFS container, can
forward requests to the respective daemons.

The illustration presents how the RBFS REST APIs communicate with various
underlying software components. RBFS microservices, which perform various
functions, are containerized in an open Linux container. RBFS APIs are generally
categorized into Public Management APIs and Internal APIs. Public Management
APIs include CtrlD API, RESTCONF API, and Operational state API. These APIs are
used by network administrators for managing and automating many of their
network administration tasks.

RBFS does not expose internal APIs such brick daemon APIs and
BDS APIs.

The illustration also presents the API Gateway daemon (ApiGwD) and Control
daemon (CtrlD), which are deployed on the host operating system (open network
Linux) along with the RBFS container. The API Gateway acts as an entry point that
provides a secure channel for all REST APIs by authenticating all requests. After
successful authentication by the API Gateway, CtrlD (Control Daemon) passes all
the requests to the respective daemons (that reside in the RBFS container) which
are responsible for performing certain tasks.

RBFS APIs

CtrlD API: CtrlD runs on the host OS (ONL) and acts as a proxy to the other APIs
including high-level APIs for the RBFS configurations. The CtrlD API, implemented
by the CtrlD, performs various tasks such as starting the container and rebooting

Technical Documentation: API References

2

the device. In case of a software upgrade, this API is used to trigger the upgrade.

API Gateway: You can deploy the API Gateway Daemon (ApiGwD) on the host OS
(that is ONL) to secure the RBFS management plane. The API Gateway
authenticates all API requests using JSON web tokens. The API Gateway Daemon
acts as the TLS endpoint for the hardware platform and it converts external access
token into an internal RtBrick token /SEC/. Finally, it forwards the requests to the
CtrlD.

The API Gateway also enforces an API throttler that provides a mechanism called
API throttle quotas to protect the RBFS system resources from being exhausted
with too many requests by a single client system that uses the RBFS APIs very
extensively.

Operational State APIs: The Operational State API, provided by the Operational
State Daemon (opsd), allows accessing system states such as routing protocol
states, interface states, subscriber states and resource utilization. The Operational
State Daemon takes care of examining the operational state of a switch and runs
actions to diagnose and troubleshoot the problems. The operational state is
ephemeral and state data is lost when the switch reboots.

RESTCONF APIs: With RESTCONF, you can manage all the configurations in RBFS.

Prometheus APIs: Prometheus is an open-source monitoring and alerting
software that is containerized or packaged as a microservice along with other RBFS
microservices in a Linux container. Prometheus APIs help to retrieve metrics from
various RBFS components for visibility.

1.2. Functions and Use cases of RBFS REST APIs

CtrlD API

The CtrlD performs various functions in the lifecycle of an RBFS container. Zero-
Touch Provisioning installs the RBFS software on the hardware devices with
minimal human intervention. It is the responsibility of the CtrlD to initiate, discover
and download the startup configuration files as part of Zero-Touch provisioning
(ZTP) process. The CtrlD retrieves the base URL and executes the startup
configuration on the device, that is pre-installed with ONL, the host operating
system.

Technical Documentation: API References

3

You can locate the CtrlD OpenAPI Specification at CTRLD API Reference.

RESTCONF API

RESTCONF is an HTTP-based REST API protocol for network management and
automation. It provides a programmatic interface for accessing data defined in
YANG. The YANG model describes the configuration syntax. In RBFS, the RESTCONF
API provides the configuration data.

You can use RESTCONF API to execute various configurations in RBFS.

You can locate the RESTCONF OpenAPI Specification at RESTCONF API Reference

 RFC and draft compliance are partial except as specified.

Operational State API

The Operational State API (opsd) provides the system state information. The ospd
is backward compatible and supports running older and newer versions of
applications together in the network. The Backward compatibility feature is useful
whenever newer RBFS releases are rolled out.

The Operational State API was implemented using the Python language that
provides a collaborative system to all stakeholders including integration partners,
customers, professional services and engineering to collaborate on the API
endpoints.

You can locate the Operational State OpenAPI Specification at Operational State
API Reference.

Guidelines and Limitations

When you execute configurations through management APIs, and then with the
Command Line Interface at the same time, it results in conflicts when you commit
the configuration through the CLI. The reason is that CtrlD directly interacts with
the backend applications and these changes are not synced with the CLI.

1.3. Configurations

This section describes the configuration files of the APIGWD and CTRLD.

Technical Documentation: API References

4

https://documents.rtbrick.com/current/api/api/index-rbfs-api.html?urls.primaryName=CTRLD%20API%20Reference
https://documents.rtbrick.com/current/api/api/index-rbfs-api.html?urls.primaryName=RESTCONF%20API%20Reference
https://documents.rtbrick.com/current/api/api/index-rbfs-api.html?urls.primaryName=Operational%20State%20API%20Reference
https://documents.rtbrick.com/current/api/api/index-rbfs-api.html?urls.primaryName=Operational%20State%20API%20Reference

APIGWD

In a production environment, the APIGWD binary starts with default parameters.
This service of APIGWD is called rtbrick-apigwd.

To see the default parameters and the files where configurations are stored, the
easiest way to figure out is to do a apigwd -help.

To see the actual installed APIGWD version we can use apigwd -version.

APIGWD has in essence 3 important configuration files:

• /etc/rtbrick/apigwd/config.json: Configuration for the apigwd

• /etc/rtbrick/apigwd/access_secret_jwks.json: JWKS file for external
communication

• /etc/rtbrick/apigwd/tls.pem: X509 public/private key file in pem format

SSL certificate

Every call to the APIGWD is secured by TLS. If there is no TLS certificate provided, it
is one generated and signed by a self-signed root CA.

To specify a TLS certificate, there are the following possibilities to achieve this:

• Provide the TLS file via ZTP

• Provide the TLS remote file URLs via the config.js:
Therefore you can also specify a reload time. Every x seconds APIGWD tries to
download a new TLS file. But for downloading, an RFC 7234-compliant cache is
used.

JWKS File

The APIGWD validates the access token against a JSON Web Key Set (JWKS)
(https://tools.ietf.org/html/rfc7517).

APIGWD allows to specify 2 sources for keyset, and for validation, the sets are
consulted in the following order:

• A local file on the filesystem:
This file can be provided via ZTP. It is recommended to provide one file, even if

Technical Documentation: API References

5

https://tools.ietf.org/html/rfc7517

it is an empty key set file. Otherwise, there is a preconfigured file on the
system that will be used.

• Provide the JWKS remote file URLs via the config.js:
Every time a token has to be verified the JWKS file will be downloaded, but for
the download an RFC 7234-compliant cache is used.

• Provide the OpenIDConnect configuration via the config.js:
Every time a token has to be verified the Issuer is consulted to get the link to
the JWKS file, and the file will be downloaded, but for the download, an RFC
7234 compliant cache is used.

Caching

As stated above, for configuration file downloads an RFC 7234 compliant cache is
used. The cache directives should be used wisely; otherwise, a lot of traffic could
be generated.

config.json

This section describes the main configuration file of APIGWD. This file can be
changed on the file system, APIGWD has a file watcher on the file and does a
reload when the file changes.

/etc/rtbrick/apigwd/config.json example

{
 "access_token_jwks_urls": [
 "http://192.168.202.56:8080/primaryJWKS",
 "http://192.168.202.56:8080/secondaryJWKS"
],

 "request_rate": 5,
 "request_burst": 10,
 "report_rejects_every": 10
}

/etc/rtbrick/apigwd/config.json format

Name Type Description

access_token_jwk
s_urls

[]string Allows to specify multipe jwks remote urls.

Remote PEM file

Technical Documentation: API References

6

pem_urls []string Allows to specify multiple PEM remote URLs.
Empty list disables the download.

pem_reload_time int Allows to specify the time after a new reload is
triggered. 0 disables the download.

Request rate limit

request_rate float The allowed requests per second per client.

request_burst int Is the maximum number of tokens that can be
consumed at once, without respect to the rate.

report_rejects_eve
ry

int Report rejects only every x seconds to avoid
massive logging to a GELF endpoint.

access_secret_jwks.json

This section describes the access_secret_jwks.json file. This file can be changed on
the file system; APIGWD has a file watcher on the file and does a reload when the
file changes.

JSON Web Key Set (JKWS) is described in the RFC 7517.

/etc/rtbrick/apigwd/access_secret_jwks.json example

{
 "keys": [
 {
 "kty": "RSA",
 "e": "AQAB",
 "use": "sig",
 "kid": "access",
 "alg": "RS256",
 "n": "NOT A REAL KEY"
 }
]
}

These keys are for the authentication of external calls towards the APIGWD.

The right key is selected by the kid (key id). With this key, the access tokens are
verified and converted to a RtBrick token.

tls.pem

This section describes the tls.pem file. This file contains the TLS certificate (public
and private key) used to serve the TLS endpoint.

Technical Documentation: API References

7

https://tools.ietf.org/html/rfc7517

If the file is not specified, a new self-signed certificate is created.

This file can be changed on the file system, APIGWD has a file watcher on the file
and does a reload when the file changes.

This file is an X509 public/private key file in PEM format specified in the RFC7468.

/etc/rtbrick/apigwd/tls.pem example

-----BEGIN CERTIFICATE-----
NOT A REAL KEY
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
NOT A REAL KEY
-----END RSA PRIVATE KEY-----

CTRLD

In a production environment, the CTRLD binary starts with default parameters. The
CTRLD service is called rtbrick-ctrld.

To see the default parameters and the files where configurations are stored, the
easiest way to figure out is to do a ctrld -help.

To see the actual installed CTRLD version, use ctrld -version.

CRTLD has three important configuration files:

• /etc/rtbrick/ctrld/config.json: Configuration for CTRLD

• /etc/rtbrick/ctrld/policy.json: Role-Based Access Control policy file.

• /var/lib/lxc/<container-name>/element.config: Element configuration file per
container.

config.json

This section describes the main configuration file of CTRLD. This file can be
changed via API; if it is changed on the file system, CTRLD has to be restarted.

/etc/rtbrick/ctrld/config.json example

{
 "element_name": "element_name",
 "pod_name": "pod_name",
 "rbms_enable": true,
 "rbms_host": "http://198.51.100.48",

Technical Documentation: API References

8

https://tools.ietf.org/html/rfc7468

 "rbms_authorization_header": "Bearer THIS IS NOT A REAL KEY",
 "rbms_heartbeat_interval": 10,
 "logging": {
 "heartbeat_interval": 60,
 "aliases": {
 "default": {
 "endpoints": [
 {
 "type": "gelf",
 "max_log_level": 5,
 "network": "http",
 "address": "http://10.200.32.49:12201/gelf"
 },
 {
 "type": "syslog",
 "max_log_level": 5,
 "network": "udp",
 "address": "10.200.32.49:516"
 }
]
 },
 "ztp": {
 "endpoints": [
 {
 "type": "gelf",
 "max_log_level": 4,
 "network": "http",
 "address": "http://10.200.32.49:12201/gelf"
 }
]
 }
 }
 },
 "auth_enabled": false
}

/etc/rtbrick/ctrld/config.json format

Name Type Description

element_name string The element name of the host personality of the
switch.

pod_name string The pod name of the host personality of the
switch.

rbms_enable bool To enable all RBMS outgoing messages
rbms_host

rbms_host string RBMS base URL e.g.: http://198.51.100.144:9009

rbms_authorization
_header

string RBMS Authorization Header is set to all calls
which are outgoing to RBMS

rbms_heartbeat_int
erval

int RBMS heartbeat Interval in seconds (⇐0 means
deactivated)

Technical Documentation: API References

9

http://198.51.100.144:9009

auth_enabled bool To Enable the authorization and authentication

logging Log configuration for the host personality of the switch. The
routing instances (elements) can configure the logging in
the RBFS configuration, and that is forwarded per routing
instance to CTRLD. The alias default, acts as the default
alias if the specific one is not set.

Name Type Description

alias string Logical name of the endpoints e.g.:
ztp for ztp messages.

Each alias can have multiple endpoints. Consider the
following constellations.

If an alias does not define any endpoint, the alias is
disabled, that means the message is not sent and will also
not be sent to the default alias. This allows disabling the
default alias, which means no message is sent as long as no
specific alias gets defined.

Name Type Description

type string Type could be syslog or gelf.

max_log_leve
l

string MaxLogLevel that will be forwarded
(default "Notice: 5)"

network string Network get network either tcp, udp
or http. Consider the support
matrix: * gelf: http * syslog: udp, tcp

address string Address where to send the message

formatter string The formatter that should be used.
Consider the support matrix:

• gelf: none

• syslog: rfc5424

Technical Documentation: API References

10

policy.json

This section shows the role based access control (RBAC) configuration for CTRLD.
This file can be changed via API; if it is changed on the file system CTRLD has to be
restarted.

/etc/rtbrick/ctrld/policy.json example

{
 "permissions": [
 {"sub": "system", "obj": "/*", "act": ".*" },
 {"sub": "supervisor", "obj": "/*", "act": ".*" },
 {"sub": "operator", "obj": "/*", "act": ".*"},
 {"sub": "reader", "obj": "/*", "act": "GET"},
 {"sub": "reader", "obj":
"/api/v1/rbfs/elements/{element_name}/services/{service_name}/proxy/bds/table/walk
", "act": ".*"},
 {"sub": "reader", "obj":
"/api/v1/rbfs/elements/{element_name}/services/{service_name}/proxy/bds/object/get
", "act": ".*"}
]
}

/etc/rtbrick/ctrld/policy.json format

Name Type Description

sub string Subjects means the role which has the permission.
Here RegexMatch Function is used: a regular
expression pattern matcher.

obj string Object is the REST endpoint. Here KeyMatch4
Function is used: KeyMatch4 determines whether
key1 matches the pattern of key2 (similar to
RESTful path), key2 can contain a * and other
patterns:

• "/foo/bar" matches "/foo/*"

• "/resource1" matches "/{resource}"

• "/parent/123/child/123" matches
"/parent/{id}/child/{id}"

• "/parent/123/child/456" does not match
"/parent/{id}/child/{id}"

Technical Documentation: API References

11

https://casbin.org/docs/en/function
https://casbin.org/docs/en/function
https://casbin.org/docs/en/function

Name Type Description

act string And Action is the HTTP Method. Here RegexMatch
Function is used: a regular expression pattern
matcher.

So the example rules mean:

• The user with the role system is allowed to access all rest endpoints and act on
them with all HTTP methods.

• The user with the role reader can access all rest endpoints but can only call the
HTTP GET method.

• All authenticated users are allowed to access the proxy endpoint with all HTTP
methods. The user with the role system can access all rest endpoints and act
on them with all HTTP methods.

element.config

This section shows the element.config, which can be created per container. This
file allows redefining the element name so that the name can defer from the
container name.

/var/lib/lxc/<container-name>/element.config example

/var/lib/lxc/<container-name>/element.config format

Name Type Description

element_name string Name of the Element (Default container name)

pod_name string Name of the POD

ztp_enabled bool If enabled, the ZTP post process starts after the
switch changes to an operational state "up". It’s
recommended to set this to false. In that case,
only the initial installation or reinstallation will
trigger that process.

1.4. Business Events

APIGWD and CTRLD send different GELF messages about status changes or

Technical Documentation: API References

12

https://casbin.org/docs/en/function
https://casbin.org/docs/en/function

progress of processes to a GELF endpoint.

GELF message format

Name Type Mandatory Description

Default Message Fields

version String Yes The GELF message format version.
Default value: 1.1

host String Yes The hostname is assigned via DHCP
to the management interface.
Defaults to the management IP
address if no hostname is assigned.

level int Yes Message Severity. See Table-1.

timestamp float Yes Unix epoch time in seconds with an
optional fraction of milliseconds.

short_message String Yes Problem message.

full_message String No Detailed problem description.

_daemon String Yes Name of the daemon.

_log_module String Yes The module name identifies the
component that created the log
record. It allows segregating log
records into different streams. Each
stream can apply different
processing rules and also be
processed by different
organizational units of the network
operator.

Technical Documentation: API References

13

Name Type Mandatory Description

_log_event String Yes The log event identifies the log
message template in the log
configuration. The log event
simplifies finding where in the
system the log record was created.
The log event should be succinct
and typically conveys a unique
reason code. In addition, the log
event should be a reference that can
be looked up in the product
troubleshooting guide.

_serial_number String Yes The serial number of the switch. This
allows tracking hardware
replacements, even if the element
name remains the same. Empty if
not available.

_rtb_image_version String No ONL Image Version that is installed
on the switch that reports this
message.

_origin String No host or container, defines the origin
of a message. This is only set for
events that are ambiguous.

ZTP Message Fields

_config_name String No Exposes the loaded configuration
name. Only set when a configuration
file was processed or an attempt to
process the file failed (e.g., 404 Not
Found response from the HTTP
server while attempting to load the
configuration)

_config_sha1 String No Exposes the SHA1 checksum of the
loaded configuration. Only set when
the HTTP server returns a
configuration.

Technical Documentation: API References

14

Name Type Mandatory Description

_operational_state String No Exposes the operational state of the
element.

Request Message Fields

_rid String No Request ID, either X-Request-ID or
new generated

_user_name String No User name out of the access token

_user_subject String No User subject out of the access token

_received_time String No Time when the requested arrived

_method String No HTTP method

_url String No HTTP url

proto String No HTTP protocol

_remote_ip String No HTTP remote ip address

Service State Message Fields

_service_name String No Service name

_service_operationa
l_state

String No Operational Service

_service_startup_ti
me

Numb
er

No Service startup time in unix epoch
time, the number of seconds
elapsed since January 1, 1970 UTC.

_service_down_flap_
time

Numb
er

No Last down flap time in unix epoch
time, the number of seconds
elapsed since January 1, 1970 UTC.

_service_down_flap_
counter

Numb
er

No Last down flap time in unix epoch
time, the number of seconds
elapsed since January 1, 1970 UTC.

_service_restarted String No Restart is set to true if
service_startup_time was changed.

Level Descriptions as in RFC 5424

Level Name Comment

0 Emergency System is unusable

Technical Documentation: API References

15

Level Name Comment

1 Alert Action must be taken immediately

2 Critical Critical conditions

3 Error Error conditions

4 Warning Warning conditions

5 Notice Normal but significant condition

6 Informational Informational messages

7 Debug Debug-level messages

GELF sample message

{
 "_config_name": "ctrld",
 "_config_sha1": "f1e06ef1e53becde6f8baf2b2fafe7dc9c36f6f0",
 "_daemon": "ctrld",
 "_element_name": "leaf01",
 "_log_event": "ZTP0011I",
 "_log_module": "ztp",
 "_serial_number": "591654XK1902037",
 "host": "leaf01",
 "level": 6,
 "short_message": "ztp ctrld config set",
 "timestamp": 1588382356.000511,
 "version": "1.1"
}

Event Types

Instanc
e

severit
y

log_mo
dule

log_event description

ztp Notice ztp ZTP0011I ztp ctrld config set

ztp Warn ztp ZTP0012W ztp ctrld config not provided

ztp Alert ztp ZTP0013E ztp ctrld config not set

ztp Notice ztp ZTP0021I ztp startup config set

ztp Warn ztp ZTP0022W ztp startup config not provided

ztp Alert ztp ZTP0023E ztp startup config not set

ztp Notice ztp ZTP0041I ztp ctrld rbac config set

ztp Warn ztp ZTP0042W ztp ctrld rbac config not provided

ztp Alert ztp ZTP0043E ztp ctrld rbac config not set

Technical Documentation: API References

16

Instanc
e

severit
y

log_mo
dule

log_event description

ztp Notice ztp ZTP0051I ztp tls config set

ztp Warn ztp ZTP0052W ztp tls config not provided

ztp Alert ztp ZTP0053E ztp tls config not set

ztp Notice ztp ZTP0061I ztp accessjwks config set

ztp Warn ztp ZTP0062W ztp accessjwks config not provided

ztp Alert ztp ZTP0063E ztp accessjwks config not set

ztp Notice ztp ZTP0071I ztp apigwd config set

ztp Warn ztp ZTP0072W ztp apigwd config not provided

ztp Alert ztp ZTP0073E ztp apigwd config not set

ztp Notice ztp ZTP1000I ztp process finished

security Warn security SEC0001W access forbidden

security Warn security SEC0002W access invalid rtb token

security Warn security SEC0003W access invalid access token

security Warn security SEC0004W not able to download remote keys

security Warn security SEC0005W not able to download remote pem

security Warn security SEC0006W request rate limited (this message
is also rate limited, and can be
controlled in the apiwd config)

element Notice element HTB0001 heartbeat with the
operational_state

element Notice element STA0001 element state change

element Notice element STA0021 service up

element Error element STA0022 service unexpected down

element Notice element STA0023 service expected down

element Notice element STA0003 ready for service

element Notice element STA0031 module new (one of the modules is
newly discovered e.g. fan, SFP …,
this event will be fired after every
reboot of ctrld)

Technical Documentation: API References

17

Instanc
e

severit
y

log_mo
dule

log_event description

element Notice element STA0032 module changed (one of the
modules got changed e.g. fan, SFP
…)

1.5. Related Documentation

/ONIE/ The ONIE documentation outlines the DHCP options supported
for image discovery.
https://opencomputeproject.github.io/onie/design-spec/
discovery.html

/ZTP/ The Zero-Touch Provisioning Guide outlines the current
configuration discovery process.
https://documents.rtbrick.com/current/ztp/ztp_guide_online.html

/SEC/ The Secure the Management Plane guide gives a detailed insight
on this topic.
https://documents.rtbrick.com/current/secmgmt/
secmgmt_guide_online.html

/RADIUS/ The RADIUS attribute matrix provides an overview of the
supported RADIUS attributes including a reference to the RFC
that defines the message attribute.
To obtain this document, contact your customer support team.

/CTRLD/ The CTRLD API describes all CTRLD REST API endpoints in detail.
https://documents.rtbrick.com/index_api.html

/RESTCONF/ The RESTCONF API reference describes all configuration API
endpoints.
https://documents.rtbrick.com/index_api.html

/GELF/ The Graylog Extended Log Format (GELF) is a log format, this
document outlines the fundamentals.
To obtain this document, contact your customer support team.

Technical Documentation: API References

18

https://opencomputeproject.github.io/onie/design-spec/discovery.html
https://opencomputeproject.github.io/onie/design-spec/discovery.html
https://documents.rtbrick.com/current/ztp/ztp_guide_online.html
https://documents.rtbrick.com/current/secmgmt/secmgmt_guide_online.html
https://documents.rtbrick.com/current/secmgmt/secmgmt_guide_online.html
https://documents.rtbrick.com/index_api.html
https://documents.rtbrick.com/index_api.html

2. RBFS APIs
 <link rel="stylesheet" type="text/css" href="./_attachments/rtbrick.css">
 <div id="swagger-ui"></div>
 <script src="./_attachments/swagger-ui-bundle.js"></script>
 <script src="./_attachments/swagger-ui-standalone-preset.js"></script>
 <script>
 window.onload = function () {
 const DisableTryItOutPlugin = function() {
 return {
 statePlugins: {
 spec: {
 wrapSelectors: {
 allowTryItOutFor: () => () => false
 }
 }
 }
 }
 }

 // Begin Swagger UI call region
 const ui = SwaggerUIBundle({
 urls: [
 { "url": "./_attachments/rbfs/swagger_ctrld.yaml", "name": "CTRLD API
Reference" },
 { "url": "./_attachments/rbfs/rtbrick-config_restconf_swagger.json",
"name": "RESTCONF API Reference" },
 { "url": "./_attachments/rbfs/swagger_opsd.yaml", "name": "Operational
State API Reference" },
 { "url": "./_attachments/rbfs/swagger_bds.yaml", "name": "BDS API
Reference" },
],
 dom_id: '#swagger-ui',
 deepLinking: true,
 docExpansion:"none",
 presets: [
 SwaggerUIBundle.presets.apis,
 SwaggerUIStandalonePreset
],
 plugins: [
 SwaggerUIBundle.plugins.DownloadUrl,
 DisableTryItOutPlugin
],
 layout: "StandaloneLayout"
 })
 // End Swagger UI call region

 window.ui = ui
 }
 </script>

Technical Documentation: API References

19

3. RBMS APIs
 <link rel="stylesheet" type="text/css" href="./_attachments/rtbrick.css">

 <div id="swagger-ui"></div>

 <script src="./_attachments/swagger-ui-bundle.js"> </script>
 <script src="./_attachments/swagger-ui-standalone-preset.js"> </script>
 <script>
 window.onload = function () {
 const DisableTryItOutPlugin = function() {
 return {
 statePlugins: {
 spec: {
 wrapSelectors: {
 allowTryItOutFor: () => () => false
 }
 }
 }
 }
 }

 // Begin Swagger UI call region
 const ui = SwaggerUIBundle({
 urls: [
 { "url": "./_attachments/rbms/swagger_ztp_mgmt.yaml", "name": "ZTP
Management Server API Reference" },
 { "url": "./_attachments/rbms/swagger_leitstand_template_engine.yaml",
"name": "Template Engine API Reference" },
 { "url": "./_attachments/rbms/metric.yaml", "name": "Resource Inventory
Metric API" },
 { "url": "./_attachments/rbms/meta.yaml", "name": "Resource Matadata API"
},
 { "url": "./_attachments/rbms/jobs.yaml", "name": "Job Management API" },
 { "url": "./_attachments/rbms/image.yaml", "name": "Resource Inventory
Image API" },
 { "url": "./_attachments/rbms/group.yaml", "name": "Resource Inventory
Element Group API" },
 { "url": "./_attachments/rbms/facility.yaml", "name": "Resource Inventory
Rack and Facility API" },
 { "url": "./_attachments/rbms/element.yaml", "name": "Resource Inventory
Element API" },
 { "url": "./_attachments/rbms/dns.yaml", "name": "DNS Zone API" },
 { "url": "./_attachments/rbms/commons.yaml", "name": "commons" },
],
 dom_id: '#swagger-ui',
 deepLinking: true,
 docExpansion:"none",
 presets: [
 SwaggerUIBundle.presets.apis,
 SwaggerUIStandalonePreset
],
 plugins: [
 SwaggerUIBundle.plugins.DownloadUrl,
 DisableTryItOutPlugin
],
 layout: "StandaloneLayout"
 })
 // End Swagger UI call region

Technical Documentation: API References

20

 window.ui = ui
 }
 </script>

Technical Documentation: API References

21

Registered Address Support Sales

40268, Dolerita Avenue
Fremont CA 94539

+1-650-351-2251 +91 80 4850 5445

http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2024 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick’s Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

Technical Documentation: API References

22

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

	Technical Documentation: API References
	Table of Contents
	1. RBFS API User Guide
	1.1. RBFS REST APIs
	1.2. Functions and Use cases of RBFS REST APIs
	1.3. Configurations
	1.4. Business Events
	1.5. Related Documentation

	2. RBFS APIs
	3. RBMS APIs

