;; tbrick

RBFS Metric Sampling and
Monitoring

Version 20.8.1, 10 August 2020

RBFS Metric Sampling and Monitoring

Registered Address Support Sales

26, Kingston Terrace, Princeton,
New Jersey 08540, United States

+91 80 4850 5445

http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2020 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick's Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

RBFS Metric Sampling and Monitoring

Table of Contents

1. Basic Concepts
1.1. BDS as Single Point of Truth
1.2. Metric Types
1.3. Metric Labels
1.4. Sampling Rate and Retention Period
1.5. Metric Monitoring
2. Temperature Monitoring
2.1. Sampling Temperature Sensors
2.2. Querying the Chassis Temperature
2.3. Monitoring Temperature Values
3. CPU Utilization
3.1. Sampling CPU Counters
3.2. Computing Total CPU Utilization From Counter Samples
3.3. Sampling Process CPU Counters
3.4. Computing Process CPU Utilization From Counter Samples
. PPPoE Session Count
. Metric Management
. Grafana Dashboards
. Summary
. References

00 N o U1 B~

NOoO o b~ DwWwWw

N N N m
W N O U000 Oy U AN —

RBFS Metric Sampling and Monitoring

1. Basic Concepts

Metric sampling is configured through the CTRLD API. The sampled data is stored
in Prometheus, an open source monitoring tool with a built-in time series database
(TSDB), and can be queried from the switch using PromQL, the Prometheus Query
Language. The CTRLD API also supports programming alert conditions in
Prometheus Alert Manager.

]
|
i
]
container BDS i
(LXC) J !
A
Programs | samples |
metric : metrics :
sampling and ' |
PoD Control and monitoring programs |
Management - - CTRLD — Prometheus |
Services Queries quenes !
metrics stores i
queries pFmetrics |
¥ monitors i
i
]
i
i
]
]
i
]
]
i

Log event
(GELF message) R !

Figure 1. Metric sampling and monitoring overview.

Brick daemons feeding data into BDS are not depicted to keep the drawing simple.

1.1. BDS as Single Point of Truth

The Brick Data Store (BDS) is an object-oriented in-memory database that stores
the switch configuration and operational state. BDS objects are typed objects,
which means that every object and object attribute is of a certain type. BDS objects
are described in schemas and organized in tables. One or more indexes per table
exists to query objects. BDS supports sampling values from

« BDS object attributes and from
+ BDS table indexes.

Every numeric BDS object attribute can be periodically sampled to create a time
series of the attribute value. In addition, BDS provides built-in converters for some
attribute types that can be converted to numeric values. The bandwidth type is a
good example. The bandwidth is stored as a string and consists of a numeric value
and a data rate unit, for example, 100.000 Gbps. The built-in converter translates
the bandwidth to a numeric value in bits per seconds.

BDS indexes are sampled if the number of objects in a table is of interest. This

RBFS Metric Sampling and Monitoring

tutorial includes examples for object- and index-based metrics.

1.2. Metric Types

There exist two types of metrics:

« gauge
* counters

A gauge metric values are within a certain range and can basically be visualized as
is or after applying a simple linear transformation. The value of a gauge metric can
increase and decrease. A temperature value is an example for a metric of type

gauge.

Counters increase until they are reset manually or by a restart (or by an overflow
which is very unlikely to happen because of the length of the data word to store
the counter value). The interesting aspect when working with counters is the delta
of the count value between two samples, i.e. the derivation of the counter value
over time. The derivation of the counter value is still an absolute value that needs
to be put into perspective to the available resources to compute the resource
utilization in percent. The CPU tick counters are examples for counter metrics.

1.3. Metric Labels

Metric labels separate metric instances from each other. Metric labels have either
a static value or is read from a BDS object attribute.

The byte counters, for example, exist for each physical interface. The ifp_name
label assigns the sampled counter values to the physical interface and is read from
the interface_name attribute.

1.4. Sampling Rate and Retention Period

The sampling rate is 5 seconds and the retention period is five days. The
configuration is built-in to the image and cannot be changed through the CTRLD
API.

1.5. Metric Monitoring

Metric monitoring relies on the Prometheus Alert Manager. The alert manager
notifies CTRLD about all satisfied alert conditions. CTRLD translates the notification
to a GELF message /3/ and forwards the message to the log management system.
CTRLD exposes an API for programming alert conditions and in turn programs the
Prometheus Alert Manager based on the specified alert rules.

RBFS Metric Sampling and Monitoring

2. Temperature Monitoring

The first example in this tutorial samples and monitors temperature values to
outline how to work with gauge metrics. Run rtb resmond show sensor to list all
available temperature sensors.

Listing 1 - CLI output of temperature values.

$ rtb resnond show sensor tenperature

Fom e - - - o m e e e a oo o e e e e e e oo -

T T +
Resource Id Nane St at us Tenperature

(m|lidegree)

e e oo

s +
20971520 CPU Core PRESENT 49000
20971521 LM75-1-48 PRESENT 33500
20971522 LM75- 2- 49 PRESENT 33000
20971523 LM75- 3- 4A PRESENT 29000
20971524 LM75- 3- 4B PRESENT 31000
20971525 PSU-1 Thermal Sensor 1 PRESENT 28000

This switch has four chassis temperature sensors (LM75), a CPU temperature
sensor (CPU Core) and a power supply unit (PSU) temperature sensor (PSU-1
Thermal Sensor 1). A switch typically has two independent power supply units. The
second PSU of this switch was not attached in the lab environment.

The temperature is read from the temperature attribute of the sensor_object stored
in the global.chassis_0.resource.sensor BDS table. The sensor object also includes a
type (resource_type attribute) and a name (resource_name attribute). The unit of the
temperature is millidegree celsius. An excerpt of the sensor schema definition is
listed below:

RBFS Metric Sampling and Monitoring

Listing 2 - Excerpt from BDS sensor object schema definition.

{

"codepoi nt": 2,

“name": "“resource_nane",

"type": "string",

“description": "Nanme of the resource"
},
{

"codepoint": 4,

"nanme": "resource_type",

"type": "string",

"description": "resource type"
Ji o
{

"codepoi nt": 33,

"nanme": "tenperature",

"type": "uint32",

"description": "tenperature in mllidegree celsius"
}

o Contact RtBrick professional services if you need help in finding
the BDS table and attribute names.

2.1. Sampling Temperature Sensors

Based on the available sensors it makes sense to create three temperature
metrics:

* chassis_temperature_millicelsius to sample the chassis temperature
* cpu_temperature_millicelsius to sample the CPU temperature and

* psu_temperature_millicelsius to sample the PSU temperature.

The CTRLD APl exposes the /api/vi/elements/{element}/metrics/{metric. name}
endpoint. A HTTP PUT request to this endpoint configures a metric by either
creating a new metric or replacing an existing metric with the specified
{metric. name}. {element} contains the name of the element assigned in the
element configuration file and defaults to the container name if no element name
was specified. The default container name is rtbrick.

All metrics need to be labeled with the sensor name. In addition, a filter is needed
to sample only the sensors for the respective type of temperature. The listings
below show the JSON objects to sample the chassis temperature as an example:

RBFS Metric Sampling and Monitoring

Listing 3 - JSON object to configure chassis temperature sampling.

{ "nmetric_nane": "chassis_tenperature_mllicelsius",
“"tabl e_nanme": "gl obal.chassis_0.resource. sensor",
"bds_metric_type": "object-netric",
"metric_type": "gauge",
"metric_description": "Chassis tenperatures in mllidegree cel sius",
"attributes": [
{ "attribute_nanme": "tenperature"
"l abel s": [

{ "l abel _nane":"sensor",
"l abel _val ue":"resource_nane",
"dynam c":true }
1}
IF
"filters":|
{ "match_attribute_nane":"resource_type",
"mat ch_t ype": "exact",
"mat ch_val ue":"thermal " },
{ "match_attribute_nane":"resource_nane"
"mat ch_t ype": "regul ar - expr essi on"
"match_val ue":"LM *"}

1}

The temperature metric is of type gauge (metric_type) and sample from a BDS
object (bds_metric_type). The temperature value shall be sampled, which is of
numeric type (uint32, see the schema definition above). The filter section makes
sure that only thermal sensors are sampled and also filters for the LM sensors that
measure the chassis temperature.

2.2. Querying the Chassis Temperature

The following PromQL query returns the chassis temperature in degree Celsius
from the Prometheus running on the switch.

chassis_tenperature_mllicelsius / 1000

The next query converts the chassis_temperature from degree Celsius to
Fahrenheit:

(chassis_stenperature_nillicelsius / 1000) * 9/ 5 + 32

Both expressions are examples for simple linear transformations of a gauge
metric. The queries can be used in Grafana to visualize the chassis temperature
time series. The screenshot below shows a chassis temperature panel of a Grafana
dashboard:

RBFS Metric Sampling and Monitoring

Chassis Temperature

Sensor LM75-3-48 3¢ @2'C 3¢ E2C

Figure 2. Chassis temperature Grafana panel.

0 The Grafana dashboard settings for the metrics used in this
tutorial can be requested from RtBrick professional services.

2.3. Monitoring Temperature Values

A high temperature can damage the device or shorten its lifetime. Therefore it
makes sense to monitor the temperature to get notified about critical temperature
values. The alert condition is defined by the acceptable duration of exceeding a
specified temperature value, for example, the average chassis temperature is not
allowed to exceed 40°C over the last five minutes.

The temperature threshold and evaluation period are example
0 values. The actual values must be taken from the hardware
platform documentation or requested from the vendor.

The listing below shows the complete chassis temperature alert rule.
Listing 4 - Chassis temperature alert rule.

{ "alert_group": "health",

"alert_rule_nane": "ChassisTenperatureAlert",

"expr": "(avg_over _tinme(chassis_tenperature_mllidegrees[1n]) / 1000) > 40",

"for": "5nt,

"interval ": "1nt,

"description": "The average chassis tenperature of {{$l abels. el enent_nane}}
exceeded 40°C for nore than 5 m nutes.",

"level": 1,

"sunmmary": "The chassis tenperature exceeded 40°C. " }

The alert rule evaluates every single minute (interval) whether the average

RBFS Metric Sampling and Monitoring

temperature in the past minute exceeded 40 degrees (expr) and raises an alert if
the expression is satisfied for 5 minutes (for), that is, 5 times in a row. The
summary field contains a short description of the problem whereas the optional
description field contains a more detailed message. The summary is mapped to
the short_message GELF field and the description is mapped to the full message
GELF field. The severity is set to Alert (level). The level attribute values are taken
from the GELF format which in turn took it from the Syslog protocol. The table
below lists all supported levels:

Table 1. GELF message severity levels

Level Description as in RFC 5424
Name Comment
0 Emergency System is unusable
1 Alert Action must be taken immediately
2 Critical Critical conditions
3 Error Error conditions
4 Warning Warning conditions
5 Notice Normal but significant condition
6 Informational Informational messages
7 Debug Debug-level messages

Every alert rule has a unique name (alert_rule_name). The PUT operation replaces
an existing alert rule with the same name. Every alert rule is assigned to exactly
one alert group (alert_group). All alert rules in the same alert group with the same
interval setting are evaluated at the same time.

The for attribute is optional. A similar alert rule can be implemented by omitting
the for attribute and computing the average temperature over the past five
minutes:

Listing 5 - Alternative chassis temperature alert rule.

{ "alert_group": "health",

"alert_rule_nane": "ChassisTenperatureAlert",

"expr": "avg_over_tinme(chassis_tenperature_millidegrees[5n]) / 1000 > 40",

"interval": "1nt,

"description": "The {{$| abel s. el enent _nane}} average chassis tenperature
over the past 5 m nutes exceeded 40°C. ",

"level": 1,

"sunmary": "The chassis tenperature exceeded 40°C. " }

There is a subtle difference between both rules. Consider the following
temperature values:

RBFS Metric Sampling and Monitoring

Chassis Temperature

Figure 3. Chassis temperature values.

The first rule does not fire because the threshold is only exceeded for three times,
whereas the second rule fires because the average over the past five minutes
exceeds 40°C. In fact, the second rule fires an alert albeit the temperature exceeds
the alert threshold for 4 minutes only. How about using the min rather than the
avg function, i.e. the temperature must exceed the threshold for five minutes? In
this case, the rule wouldn't fire an alert if the chassis temperature is wobbling
around the threshold.

The first rule aims to mitigate both effects:
* The first rule fires an alert if the chassis temperature is wobbling around the

threshold but on average exceeds the threshold five times in a row.

* The first rule does not fire an alert in case of a chassis temperature spike as
depicted in Figure 3, because a spike does not satisfy the rule five times in a
row.

10

RBFS Metric Sampling and Monitoring

3. CPU Utilization

The second example measures the CPU utilization to outline how to work with
counter metrics. Run rtb resmond show cpu usage to display the current CPU
utilization.

Listing 6 - CPU core utilization CLI command.

$ rtb resnond show cpu usage

F - S Fomm e e e oo Fommm e e oo S S TS TS
fooooooocos +
Nane Tot al User Sys Ni ce I/ O wai t Idle I RQ
Sof t -1 RQ
fooooocoe foococcooos foococcooos foococccoos foococcooos foococcooos foococccoos foococccoos
focooocooooo +
cpu 4% 2% 2% 0% 0% 95% 0%
0%
cpu0 1% 0% 1% 0% 0% 99% 0%
0%
cpul 16% 12% 4% 0% 0% 83% 0%
0%
cpu2 3% 2% 0% 0% 0% 96% 0%
0%
cpu3 10% 1% 9% 0% 0% 89% 0%
0%
cpu4 2% 1% 1% 0% 0% 97% 0%
0%
cpub 4% 0% 4% 0% 0% 96% 0%
0%
cpub 3% 3% 0% 0% 0% 97% 0%
0%
cpu7? 0% 0% 0% 0% 0% 100% 0%
0%
Fommm o a B S T B B T T
S +

The CPU provides a set of counters to measure the CPU utilization in jiffies /4/. A
jiffy is the duration of a software clock tick, which is platform-dependent. By that, a
jiffy is neither a constant period of time nor very meaningful to a human, which is
why the counter values need to be put into perspective.

First, it is important to measure the total CPU utilization to see how busy the
switch is. Secondly, if the CPU utilization is considerably high, it is interesting to
find out which processes cause the high CPU utilization. Both aspects are
addressed in this tutorial.

The time spend in user and kernel space needs to be divided by the total amount
of available processing time to compute the total CPU utilization:

total _cpu_utilization = (total _cpu_ user_jiffy + total _cpu_sys jiffy) /
(total _cpu_total _jiffy)

where

11

RBFS Metric Sampling and Monitoring

« total_cpu_user_jiffy is the total amount of time spent in user mode in a
sampling interval,

« total_cpu_sys_jiffy is the total amount of time spent in kernel mode in a
sampling interval and

* total_cpu_total_jiffy is the total amount of computing time available in a
sampling interval.

The cpu_total_utilization value is dimensionless. The value range is between 0 and
1. It can be converted into percentage by being multiplied by 100%.

total cpu_utilization_percentage = total _cpu_utilization * 100%
The process total load ratio expresses the ratio a process load to the total load:

proc_total load ratio = (proc_cpu_user_jiffy + proc_cpu_sys jiffy) /
(total cpu_ user jiffy + total _cpu_sys jiffy)

where

« proc_cpu_user_jiffy is the process time spent in user mode in a sampling
interval and

* cpu_sys_proc_jiffy is the process time spent in user mode in a sampling interval

The process_total_load_ratio value is dimensionless. The value range is between 0
and 1. It can be converted into percentage by being multiplied by 100%.

proc_total |oad ratio_percentage = proc_total _load ratio * 100%

3.1. Sampling CPU Counters

The CPU counters are located in two different tables. The total CPU utilization can
be sampled from the user_cpu_tick, sys_cpu_tick and total_cpu_tick attributes in
the global.chassis_0.resource.cpu_usage table. This table contains the total
counters but also counters per supported hardware thread (virtual core).

The JSON objects below enables CPU counter sampling for the three mentioned
counters:

12

RBFS Metric Sampling and Monitoring

Listing 7 - JSON object to enable total CPU utilization counter sampling.

{ "netric_nane": "total _cpu_total jiffy",
"tabl e_nanme": "gl obal.chassis_0.resource.cpu_usage",
"bds_metric_type": "object-netric",
"metric_type": "counter",
"metric_description": "Total CPU utilization",
"attributes": [
{ "attribute_nanme": "total cpu_tick",
"l abel s": [
{ "l abel _nane": "cpu",
"l abel _val ue": "cpu_id",

“dynam c": true }
1}
1}

Listing 8 - JSON object to enable total user mode CPU utilization counter sampling.

{ "metric_name": "total cpu_user_jiffy",
"tabl e_nane": "gl obal.chassis_0.resource.cpu_usage",
"bds_nmetric_type": "object-netric",
"metric_type": "counter",
"metric_description": "Total user nbde CPU utilization",
"attributes": [
{ "attribute_nanme": "user_cpu_tick",
"l abel s": [
{ "l abel _nane": "cpu",
"l abel _val ue": "cpu_id",

“dynam c": true }
1}
1}

Listing 9 - JSON object to enable total kernel CPU utilization counter sampling.

{ "netric_nane": "total _cpu_sys_jiffy",
"tabl e_nane": "gl obal.chassis_0.resource.cpu_usage",
"bds_nmetric_type": "object-netric",
"metric_type": "counter",
"metric_description": "Total kernel nobde CPU utilization",
"attributes": [
{ "attribute_nanme": "sys_cpu_tick",
"l abel s": [
{ "Il abel _nane": "cpu",
"l abel _val ue": "cpu_id",

"dynam c": true }
1}
1}

13

RBFS Metric Sampling and Monitoring

3.2. Computing Total CPU Utilization From Counter
Samples

The Prometheus Query Language /3/ provides functions to work with counters and
also allows to put time series into perspective.

0 Some PromQL functions should be used for gauge metrics only
others only for counter metrics.

The PromQL queries below computes the total user, kernel and user + kernel CPU
utilization:

rate(total _cpu_user_jiffy{cpu="cpu"}[60s])
/| rate(total _cpu_total jiffy{cpu="cpu"}[60s])

rate(total _cpu_sys jiffy{cpu="cpu"}[60s])
/ rate(total _cpu_total jiffy{cpu="cpu"}[60s])

(rate(total _cpu_user_jiffy{cpu="cpu"}[60s])
+ rate(total _cpu_sys_ jiffy{cpu="cpu"}[60s]))
/| rate(total _cpu_total jiffy{cpu="cpu"}[60s])

The rate function computes the delta between two sampled count values. The rate
function is optimized for counters and can detect counter resets by being aware
that a counter value always increases unless a reset has taken place. The rate
function handles counter resets properly. The cpu label filters for the total count
values for all virtual cores.

The PromQL query below computes the virtual core utilization:

(rate(total _cpu_user_jiffy{cpul=
+ rate(total _cpu_sys jiffy{cpu!
/ rate(total _cpu_total _jiffy{cpu!

"cpu”}[60s])
"cpu”}[60s]))
"cpu”}[60s])

The cpu label identifies the virtual core. The BDS contains count values for each
virtual core but also the total count over all virtual cores. The first dashboard
queried the total count by filtering for cpu="cpu", whereas the second dashboards
fetched the per virtual core counters by filtering for cpu!="cpu", i.e. by excluding
the total count over all virtual cores from the result set.

The screenshots below show Grafana dashboard panels to display the computed
total CPU utilizations and the utilization of the virtual cores.

14

RBFS Metric Sampling and Monitoring

Total CPU Liilization =
6.000%
&.000% 2020-04-22 11:37:54
= User: 2.895%
o000 Kernel: 2.038%
e User + Kemel: 4.933%
3.000%
2.000%
1.000%
10:20 10:30 10:40 10:50 11:00 11:10 11:20 11:30 11-40 11:50 12:00
mium max avg curreal
—T 2727% 3.73% 2936% 2971%
Kernel 1768% 2175% 1980% 1.913%
Jser + Kermal 4635 SAT4% 4016% 4884%

Figure 4. Total CPU utilization Grafana panel.

Virtual Core Wilization =

25.00%
20.00%
15.00%
2020-04-22 11:17:39

= cpul (virtual core): 2.282%

10.00% cpul (virtual core): 20.384%

7 cpu2 (virtual core): 2.363%

| . i r = cpud (virtual core) 5.444%

5.00% - . : J J [= gpud (virtual eore) 2.916%

= cpu’5 (virtual core): 3118k A

E v-;" ppey| &
] =cpub (virtual core): 8.483% W

= cpu? (virtual core): 2.069%

1020 10:30 10:40 10:50 1100 11:10 120 (N 11 50 12:00

min max avg current

== Cpull (virtual core) 1.297% 7.532% 2153% 2T0a%
cpul (virlual core) 19.512% NTTTE H0.202% 15.B05%
cpul {virtual cora) 1.139% 3.324% 2.087% 2.550%

= Cpu3 (virual cora) 4.056% TABS% 5.61B% S.010%
= cpud (virtual core) 1.714% A751% 2.789% 3.030%
== CpUS (viriual core) 1.337% 3378% 2.204% 2.249%

Figure 5. Virtual core utilization Grafana panel.

3.3. Sampling Process CPU Counters

The next step is to compute the per process CPU utilization. This requires to
sample the process utilization counters of each process and put them into
perspective of the total CPU counters.

The process CPU usage can be read from the cpu_user and cpu_sys attributes in
the global.chassis_0.resource.proc_usage table. The process name can be read from
the process_name attribute. The listings below configure user mode and kernel
mode CPU utilization sampling per process:

15

RBFS Metric Sampling and Monitoring

Listing 10 - JSON object to enable process kernel mode CPU utilization sampling.

{ "netric_nanme": "proc_cpu_sys_jiffy"
"tabl e_nanme": "gl obal.chassis_0.resource. proc_usage",
"bds_metric_type": "object-netric",
"metric_type": "counter",
"metric_description": "Process user node CPU utilization"
"attributes": [
{ "attribute_nanme": "cpu_sys"
"l abel s": [
{ "l abel _nane": "process",
"l abel _val ue": "process_nane",

“dynam c": true }
1}
1}

Listing 11 - JSON object to enable process user mode CPU utilization sampling.

{ "metric_nane": "proc_cpu_user_jiffy"
"tabl e_nane": "gl obal.chassis_0.resource. proc_usage",
"bds_nmetric_type": "object-netric",
"metric_type": "counter",
"metric_description": "Process user node CPU utilization"
"attributes": [
{ "attribute_nane": "cpu_user",
"l abel s": [
{ "label _nane": "process",
"l abel _val ue": "process_nane",

“dynam c": true }
1}
1}

3.4. Computing Process CPU Utilization From
Counter Samples

The PromQL query puts the CPU counters of each process into perspective of the
total CPU utilization.

(rate(proc_cpu_sys jiffy[60s]) + rate(proc_cpu_user_jiffy[60s]))
| scalar(rate(total _cpu_total jiffy{cpu="cpu"}[60s]))

The scalar function converts the one-dimensional total_cpu_total vector to a scalar
to put the CPU process utilization into perspective.

16

RBFS Metric Sampling and Monitoring

Prometheus differentiates between vectors and scalars. Algebraic
operations between two vectors, like the addition of the
0 proc_cpu_sys and the proc_cpu_user vectors above, require that

both vectors have the same labels. Otherwise no data points are
returned by Prometheus, because a built-in filter excludes all
items with different labels from the computation.

The screenshot below shows a Grafana panel to display the total CPU utilization of
each brick daemon.

CPU Utilization per Brick Dagmon ~
3000
2.500% al - ~ = RS T LT
) 2020-04-22 11:09:54
2 000 —bgp.appd.l: 0.0336%
bgp.iod.1: D.DE16%
eanfd 0.0364%
1.500% = eled: D.0308%
= fibd: 2.5808%
= ifrmd 0.1288%
1.000% = |sis appd.1 0.0336%
= gig.bod.1 D.0280%
=|2tpd.1: 0.0280%
0.500% lidpd: 0.1148%
= lagd 0.1204%
P e e e _._t =policy server: 0.0338% Y —w e roepree—re
10:20 10:30 10:40 10:50 11:00 11:10 = pooid: 0.0280% 14 11:50 1200

Figure 6. Brick daemon CPU utilization.

17

RBFS Metric Sampling and Monitoring

4. PPPoOE Session Count

Sampling the number of active PPPoE sessions is an example for an index based
metric. The PPPOE sessions are stored in the local.pppoe.ppp.sessions table. The
active session count can be determined by sampling the active-entry-count
attribute of the pppoe_ppp_session_index. The listing below shows the JSON object
to sample the active PPPOE sessions:

Listing 12 - JSON object to enable PPPOE session count sampling

{ "netric_nane": "pppoe_session_count",
“"tabl e_nane": "l ocal . pppoe. ppp. sessi ons",
"bds_netric_type": "index-netric",
"i ndex_nane": "pppoe_ppp_session_i ndex",
"metric_type": "gauge",
"metric_description": "session count",
"attributes": [

{ "attribute_nane": "active-entry-count"}

1}

0 The active PPPoE session count can increase and decrease.
Therefore the metric type must be gauge rather than counter.

Run rtb pppoed.1 show datastore schema table table-name
local.pppoe.ppp.sessions to inspect the definition of the local.pppoe.ppp.sessions
table.

Listing 13 - Excerpt of the table definition CLI output

$ rtb pppoed.1 show datastore schena tabl e table-nane |ocal.pppoe. ppp.sessions

"i ndex" [
{
"name" : "pppoe_ppp_sessi on_i ndex",
"type" : "bplus",
"immut abl e" : true ,
"key" |
"i fp_name",
"outer_vlan",
"inner_vlan",
"client_mac",
"session_id"

18

RBFS Metric Sampling and Monitoring

5. Metric Management

A HTTP GET request to the /api/vl/elements/{element}/metrics CTRLD API
endpoint lists all metrics configured on the switch. A HTTP GET request to
/api/vl/elements/{element}/metrics/{metric_name} returns the complete metric
settings. {element} is the assigned element name and {metric_name} contains the
name of the requested metric.

Metric sampling is stopped by sending a HTTP DELETE request to the
/api/vi/elements/{element}/metrics/{metric.name} CTRLD APl endpoint to remove
the metric settings from the switch configuration. More information can be found
in the CTRLD API /1/.

19

RBFS Metric Sampling and Monitoring

6. Grafana Dashboards

Grafana can visualize time series data from Prometheus /5/. Grafana can query the
Prometheus instance on RBFS by using CTRLD as proxy:

http://<SW TCH _MGMT_I| P>: 19091/ api / v1l/rbf s/ el ements/rtbrick/servi ces/ PROVETHEUS/ pr oxy/

The downside of this approach is that a Prometheus datasource needs to be
created in Grafana for every switch. In addition, all dashboards must be created
per switch too, because a dashboard panel can operate on a single datasource
only. Fortunately, Prometheus can federate data from other Prometheus instances
/5/. By that, all sampled metrics get accessible through a single Prometheus
instance. In combination with Grafana dashboard variables, a dashboard can be
configured to access all existing switches.

CTRLD Frometheus

- 192.168.202.2 i
< R

i

i

i

i

i

i

-

|

CTRLD Prometheus | |
i

i

i

i

Grafana Prometheus

Figure 7. Prometheus federation.

The federating Prometheus instance can assign new label names. This allows to
assign a unique element_name label value, if the element name is not specified on
the switches and defaults to rtbrick. The listing below shows an excerpt of the
Prometheus configuration to federate data from other Prometheus instances.

20

RBFS Metric Sampling and Monitoring

Listing 14 - Excerpt of a Prometheus federation configuration

scrape_confi gs:
- job_nane: federate
static_configs:
- targets: ["192.168.202.1:19091"]
| abel s:
el enent _nane: "I 1. pod2"
__metrics_path__:
"/api/vl/rbfs/elements/rtbrick/servi ces/ PROVETHEUS/ pr oxy/ f eder at e"
- targets: ["192.168.202.2:19091"]
| abel s:
el enent _nane: "sl1.pod2"
__netrics_path__:
"/api/vl/rbfs/el enents/rtbrick/servi ces/ PROVETHEUS/ pr oxy/ f eder at e"
- targets: ["192.168.202.3:19091"]
| abel s:
el enent _nane: "bl 1. pod2"
__metrics_path__:
"/api/vl/rbfs/elements/rtbrick/servi ces/ PROVETHEUS/ pr oxy/ f eder at e"

The remaining step is to create a single datasource in Grafana to
federated time series data.

query the

21

RBFS Metric Sampling and Monitoring

7. Summary

This tutorial outlines how to configure metric sampling and monitoring in RBFS.
Providing a full introduction to Grafana, Prometheus and the Prometheus Query
Language would go beyond the scope of this tutorial. However, we mentioned
some pitfalls and key aspects for working with PromQL and Grafana and
recommend looking up more information in the Grafana and Prometheus

documentations.

A postman collection to work with RBFS metrics and Grafana dashboards,
including the dashboards this tutorial refers to, can be requested from RtBrick.

22

RBFS Metric Sampling and Monitoring

8. References

* Switch Management API Overview
https://documents.rtbrick.com/index_api.html

* Querying Prometheus
https://prometheus.io/docs/prometheus/latest/querying/basics/

* Overview of time and timers
http://man7.org/linux/man-pages/man7/time.7.html

* GELF - Graylog Extended Logging Format
https://docs.graylog.org/en/3.2/pages/gelf.ntml

* Grafana Documentation
https://grafana.com/docs/grafana/latest/

* Prometheus Federation
https://prometheus.io/docs/prometheus/latest/federation/

23

https://documents.rtbrick.com/index_api.html
https://prometheus.io/docs/prometheus/latest/querying/basics/
http://man7.org/linux/man-pages/man7/time.7.html
https://docs.graylog.org/en/3.2/pages/gelf.html
https://grafana.com/docs/grafana/latest/
https://prometheus.io/docs/prometheus/latest/federation/

	RBFS Metric Sampling and Monitoring
	Table of Contents
	1. Basic Concepts
	1.1. BDS as Single Point of Truth
	1.2. Metric Types
	1.3. Metric Labels
	1.4. Sampling Rate and Retention Period
	1.5. Metric Monitoring

	2. Temperature Monitoring
	2.1. Sampling Temperature Sensors
	2.2. Querying the Chassis Temperature
	2.3. Monitoring Temperature Values

	3. CPU Utilization
	3.1. Sampling CPU Counters
	3.2. Computing Total CPU Utilization From Counter Samples
	3.3. Sampling Process CPU Counters
	3.4. Computing Process CPU Utilization From Counter Samples

	4. PPPoE Session Count
	5. Metric Management
	6. Grafana Dashboards
	7. Summary
	8. References

