1. Introduction to Hierarchical Quality of Service (HQoS)
Hierarchical Quality of Service (HQoS) is a technology that allows you to specify Quality of Service (QoS) behavior at multiple policy levels. It provides a high degree of granularity in traffic management. It can ensure that each network service gets the network resources it needs. This is achieved by classifying, policing, shaping, and scheduling the traffic based on service types. For example, in a simple QoS, you can differentiate between services (such as voice and video), but using H-QoS, you can apply QoS policies to different users, VLANs, maybe logical interfaces, and so on.
The RtBrick Full Stack (RBFS) uses the following HQoS mechanisms:
-
Classifier: Classifies each incoming packet as belonging to a specific class, based on packet contents. Supported classifiers are: Behavior Aggregate (BA) and Multifield (MF). In the BA classifier, packets are classified according to the CoS field: IEEE 802.1p, IPv4/v6 ToS/TC, or MPLS EXP. In the MF classifier, packets are classified using additional fields in the IP header: source IPv4/IPv6 prefix, destination IPv4/IPv6 prefix, L4 source port, L4 destination port, and/or IP protocol.
-
Queuing: Drop unqualified packets in advance using the Weighted Random Early Detection (WRED) technology in the case of congestion to ensure bandwidth for qualified services. This is performed at the egress.
-
Scheduler: Manage traffic on a device using different algorithms for queue scheduling. Such algorithms include Fair Queuing (FQ), Weighted Round Robin (WRR), and Strict Priority (SP).
-
Policer: Policer is implemented in the ingress to drop the unwanted traffic. Policer supports Committed Information Rate (CIR), the Committed Burst Size (CBS), Peak Information Rate (PIR), and Peak Burst Size (PBS). Drop behavior is to either mark traffic as green, yellow, or drop.
-
Shaper: Shaper is implemented in egress to rate-limit the traffic.
-
Remarking: Remarking allows you to rewrite the outgoing packet’s codepoint. Remarking can be performed in the ingress or the egress side of the hardware pipeline.
1.1. MPLS HQoS
The MPLS HQoS has both UNIFORM and PIPE modes. These modes provides the following functionality:
-
During MPLS Encapsulation, MPLS Mode is UNIFORM. MSB 3-bits from 8-bits IPv4-ToS or IPv6-TC are copied to the EXP bits of the newly added MPLS header(s).
-
During MPLS Decapsulation, MPLS Mode is PIPE. 8-bits IPv4-ToS or IPv6-TC will be retained and hence it provides ToS/TC codepoint transparency.
For the Uniform MPLS mode mapping between IPv4-ToS or IPv6-TC to MPLS-EXP see the table below:
IPv4-TOS / IPv6-TC | EXP | DSCP |
---|---|---|
0-31 |
0 |
0-7 |
32-63 |
1 |
8-15 |
64-95 |
2 |
16-23 |
96-127 |
3 |
24-31 |
128-159 |
4 |
32-39 |
160-191 |
5 |
40-47 |
192-223 |
6 |
48-55 |
224-255 |
7 |
56-63 |
1.2. Supported Platforms
Not all features are necessarily supported on each hardware platform. Refer to the Platform Guide for the features and the sub-features that are or are not supported by each platform.
2. HQoS Features
This chapter explains the following topics:
2.1. Priority Propagation
Hierarchical QOS (HQoS) on RBFS is implemented by connecting or chaining queues to scheduler elements (Q — > SE), scheduler elements to each other (SE — > SE), and scheduler elements to ports (SE — > PORT). Each scheduler element can have different child connection points based on types described in the section Scheduler.
This means that sched_0 in the example below is not scheduling between the attached queues, but between the different child connection points SP0 to SP3. The scheduler element sched_0 cannot differentiate between Q1 and Q2 in this example because both are connected to SP2.

Without priority propagation, each scheduler element can have multiple child connection points but just one parent connection point. Therefore traffic leaving a scheduler element cannot be differentiated by the parent scheduling element. The parent scheduler element sched_1 receives the traffic from sched_0 on the selected child connection point. As already mentioned scheduling within a scheduler element happens between child connection points. Second, a scheduler element has only one parent connection point which can be connected to a child connection point of another scheduler element (output of sched_0 → input of sched_1). This results in the situation that all traffic from this SE is handled equally regardless of the queue. This may lead to dropped priority traffic like voice or control traffic in case of congestion in parent elements. For example, if sched_1 has a shaping rate lower than the one of sched_0, it will drop traffic unaware of its original priority.
This problem is addressed with priority propagation which is enabled by default.
With priority propagation, the scheduler elements operate in a dual-flow mode with high and low-priority flows. The credits generated from the physical interface will be consumed by all attached high-priority flows first and only the remaining credits will be available for low-priority flows. In this mode, an implicit FQ element is created for each scheduler element. All queues assigned to low-priority flow will be attached to this element.
An additional composite option of the scheduler element allows also the differentiation between multiple low-priority queues if required. This composite type is created implicitly and does not need to be configured.

Without priority propagation enabled, each scheduler element consumes only one scheduler resource compared to two elements if enabled. The composite type consumes three scheduler elements.
With priority propagation disabled, all traffic is considered as high-priority flow.
Now for each queue, we can select if connected to high-priority or low-priority flow where high-priority flow is selected per default if not explicitly mentioned.
Assuming the example as before but with priority propagation and Q0 assigned to low-priority flow and Q1 - Q3 assigned to high-priority flow.

The figure below shows a typical multi-level QoS configuration without priority propagation on the left and with priority propagation on the right side.

The credits generated from the physical interface will be consumed by high-priority flow first and the remaining credits will be available for low-priority flow. The high-flow traffic at any one element is scheduled based on type and connection point. Between schedulers, it depends on how they are connected to the parent scheduling element. Per default all levels there is FQ for low and FQ for high-priority flows. The port scheduler is also FQ.
In this mode, each shaper supports two different rates for low and high-priority where the actual shaper rate is the sum of low and high-priority rates. If low-priority rate is zero, this flow is only served if high-priority flow is not consuming all credits. An example might be a high rate of 9Mbps and low rate of 1m which results in max 10Mbps for low-priority flow if high-priority flow is not consuming any packets but at least 1m is ensured.
The following example shows a typical access service provider configuration with priority propagation enabled with and without composite type.


2.1.1. Simple Priority Propagation Scheduling Example
Without priority propagation, the parent scheduler drops traffic equally from all classes as it is unaware of priorities:

With priority propagation, the parent scheduler serves high-priority flows first as shown in the figure below:

With priority propagation and dual-flow shaping, the parent scheduler serves high-priority flows first up to the high-flow shaping rate:

2.2. Behavior Aggregate (BA) Classifier
Classifiers assign the class to which a packet belongs. BA classification is performed on the ingress and maps incoming packet codepoint to a predefined class. BA Classification relies upon markings (that is, codepoint) placed in the headers of incoming packets:
-
IEEE 802.1p: Priority - 3 bits
-
IPv4: Type of Service byte (ToS) - 8 bits.
-
IPv6: Traffic Class (TC) - 8 bits.
-
MPLS: Experimental bits (EXP) - 3 bits.
![]() |
|
Classifier configuration has the following guidelines and limitations:
-
For IPv4: Only ToS-based classification is possible. DSCP-based classification is not possible.
-
For IPv6: Only TC-based classification is possible. DSCP-based classification is not possible.
-
For EXP classification, RBFS uses the uniform mode to copy MSB 3-bits from the DSCP to EXP field at the time of MPLS encapsulation at the remote box.
-
IPv4/IPv6 Classifiers do not match on labeled traffic. MPLS Classifier is required for the same.
![]() |
|
2.2.1. Ingress Remarking
Ingress remarking is achieved by configuring the “remark-codepoint” field in the Classifier. Ingress remarking rewrites the IPv4-ToS or IPv6-TC field of the incoming packet at the ingress side with configured remark-codepoint. Note that the ingress remarking is not supported for BA Classifier with MPLS-EXP match-type.
2.3. Multifield (MF) Classifier
![]() |
Multifield Classifier is currently not supported on Edgecore AS7316-26XB platform. |
Multifield (MF) classifiers assign the class to which a packet belongs based on multiple fields. Unlike the BA classifier, where only CoS fields are used for classification, the MF classifier additionally uses the following fields:
-
class: traffic class of the packet (class-0 to class-7) set by prior BA classifier
-
source prefix: source IPv4 or IPv6 prefix
-
destination prefix: destination IPv4 or IPv6 prefix
-
protocol: UDP or TCP
-
source port: UDP or TCP source port
-
destination port: UDP or TCP destination port
-
qos markings: IPv4 TOS or IPv6 TC header value
The actions supported by a multifield classifier are:
-
class: traffic class to be set (class-0 to class-7)
-
Remark codepoint: remark codepoint for ingress remarking
![]() |
RBFS treats all the incoming IPv4-TOS or IPv6-TC QoS field values in the incoming packet as untrusted. So a user is required to set action-remark-codepoint in the MF Classifier configuration to mark the QoS bits in the IP header of the outgoing packet. If action-remark-codepoint is not configured in the MF Classifier, the default value 0 shall be marked in the packet.
|
The multifield classifiers can be bound globally (global.qos.global.config) or via QoS profile (global.qos.profile.config). The global multifield classifier applies to all traffic from any instance or interface. The multifield classifier assigned via the QoS profile applies only to ingress traffic received on the interface where the profile is bound to it.
The multifield classifier is processed after BA classification which allows it to match on selected class from BA classification or to change the assigned class by more granular match conditions. Both classification stages (BA and MF) are optional, they can be combined together or used alone, controlled by configuration.
Multifield classifiers can’t be bound to MPLS core interfaces. Therefore, the downstream traffic (from core to subscriber) should be classified via global multifield classifier, while upstream traffic (from subscriber to core) can be classified via multifield classifier from the QoS profile, which is instantiated per subscriber with an implicit match on ingress logical interface (InLIF).
![]() |
|
2.3.1. Match MPLS traffic
If MF Classifier is to be applied for MPLS traffic (that is, DOWNSTREAM traffic), match mpls traffic has to be configured in the MF ACL. If not configured, traffic may or may-not match the MF ACL entry in the h/w.
2.3.2. Ingress Remarking
Ingress remarking is achieved by configuring the “action remark-codepoint” in the MF Classifier. Ingress remarking rewrites the IPv4-ToS or IPv6-TC field of the incoming packet at the ingress side with configured remark-codepoint.
2.3.3. RADIUS Controlled Dynamic MF Classifier
As described for RBFS RADIUS Services document dynamic MF Classifier mapping is supported. The dynamic MF Classifier when configured override the MF Classifier mapped via QoS profile for the corresponding subscriber but not other subscribers.
For information about configuring MF Classifier, see Multifield Classifier Configuration.
2.4. Remarking
The packet markers set the codepoint in a packet to a particular value, adding the marked packet to a particular behavior aggregate. When the marker changes the codepoint in a packet, it "remarks" the packet. The codepoint in a packet can be IPv4-ToS, IPv6-TC, MPLS-EXP, or IEEE 802.1p field.
The following remarking options are supported in RBFS:
-
IEEE 802.1p : Priority - 3 bits.
-
IPv4: Type of Service byte (ToS) - 8 bits.
-
IPv6: Traffic Class (TC) - 8 bits.
-
MPLS-IPv4: MPLS Experimental bits (EXP) - 3 bits.
-
MPLS-IPv6: MPLS Experimental bits (EXP) - 3 bits.
IPv4/v6 and IEEE 802.1p remark-map are applied on an interface - subscriber-ifl or l3ifl using Profile Name.
MPLS-IPv4/v6 remark-map is applied either globally or per-instance (to support multiple VPN marking schemes) using Remark-Map Name.
In RBFS, remarking can be performed at the ingress or egress:
-
Ingress remarking is achieved by configuring the remark-codepoint field in the Classifier. Ingress remarking rewrites the IPv4-ToS or IPv6-TC at the ingress side with configured remark-codepoint. The configured remark-codepoint can be modified again at the egress side using remark-map. The ingress remarking is supported for IPv4, IPv6, and IEEE 802.1p BA classifiers.
-
Egress remarking is achieved by configuring the remark-map. Remark Map is the mapping of match-codepoint and color to remark-codepoint. Egress remarking helps to remark the IPv4-ToS / IPv6-TC field in the IP header, or to write the EXP field in the MPLS label(s), or to write the IEEE 802.1p field in the VLAN header.
Here Color is used to set different remark-codepoint for same match-codepoint based on color marked by the Policer (i.e. green or yellow). Color is a mandatory field in remark-map. To set the same remark-codepoint for a match-codepoint irrespective of color, we have to set color as “all”.
IPv4-ToS, IPv6-TC, or MPLS-EXP remarking:
-
If the remark-codepoint is not configured in the BA Classifier or there is no hit in MF Classifier, match-codepoint in the remark-map is the ToS/TC value of the incoming IP packet.
-
If the remark-codepoint is configured in the BA Classifier and there is no hit in the MF Classifier, match-codepoint is the same value as the remark-codepoint in the BA Classifier
-
Irrespective of the remark-codepoint configured in the BA Classifier, if there is a hit in the MF Classifier the match-codepoint is the same value as the action remark-codepoint (0 if no action remark-codepoint configured) in the MF Classifier.
IEEE 802.1p VLAN remarking:
![]() |
|
L2BSA L2X VLAN Priority Remarking:
The L2BSA L2X VLAN priority remarking support for the platforms is as follows: Only A10NSP switches support VLAN operations, access-leaf is transparent.
-
Downstream Traffic (Remote ISP to Subscriber):
-
On A10NSP Switch:
-
The class derived from the VLAN Pbit Classifier is used to remark MPLS Exp and Outer VLAN IEEE-802.1 Pbit Value, inner VLAN Pbit is transparent.
-
-
On Q2C Access Leaf:
-
The received Outer VLAN IEEE-802.1 Pbit value is retained, explicit remarking at access-leaf is not supported.
-
-
-
Upstream Traffic (Subscriber to Remote ISP):
-
On Q2C Access Leaf:
-
To remark the outgoing packet, global MPLS Exp remark map can be used.
-
-
On A10NSP Switch:
-
To remark the outgoing packet, VLAN IEEE-802.1 Pbit remark map can be used.
-
-
For more information about L2BSA configurations, see the L2BSA Use Guide.
2.5. Policer
Policer defines the rate at which certain applications can access the hardware resource. So as to rate-limit the traffic from an application, policer hard-drops the unwanted packets in the ingress side.
In RBFS, policers support “two-rate, three-color” type in a 4-levels cascaded mode. This means that each policer level has two rates (CIR and PIR) and three colors (green, yellow and red) with two token buckets as shown below.

This means that traffic below CIR is marked green. Traffic above CIR but below PIR is yellow and above PIR is red. Traffic marked red will be dropped. Traffic marked yellow can be demoted by changing ToS, TC, or EXP using remark-map.
In 4 level cascade mode, unused tokens can be passed from higher priority levels to lower priorities where level 1 has the highest and level 4 has the lowest priority as shown in the figure below.

Therefore a lower level configured with CIR 0 can still serve traffic if higher priority levels are not consuming all available tokens.
The available tokens per level are calculated by remaining CIR credits from upper levels and additional credits based on configured CIR per level. Per default the resulting tokens are not limited. The optional max CIR rate attribute allows to limit the sum of tokens from CIR and upper levels. Let’s assume level 1 and 2 are both configured with a CIR of 2m. Without max CIR (default behaviour) level 2 can reach up to 4m (level 1 CIR plus level 2 CIR). This can be limited by max CIR (for example, 3m). Obviously max CIR is not relevant for level 1.
Example
CIR | RX | TX | CIR | RX | TX | |
---|---|---|---|---|---|---|
L1 |
4m |
1m |
1m |
4m |
1m |
1m |
L2 |
6m |
20m |
9m |
6m / max CIR 8 |
20m |
8m |
L3 |
0m |
20m |
0m |
0m |
20m |
1m |
L4 |
0m |
20m |
0m |
0m |
20m |
0m |
SUM |
10m |
61m |
10m |
10m |
61m |
10m |
-
Here,
m
indicates Mbps (Megabits per second)
In columns 2 through 4 of the preceding example table, L1 consumes only 1m of the available 4m and passes the remaining 3m to L2 which adds an additional 6m based on their own configured CIR resulting in 9m.
In columns 5 through 7 of the preceding example table, L1 consumes only 1m of the available 4m and passes the remaining 3m to L2 which adds additional 6m based on their own configured CIR resulting in 9m. But because of the CIR limit set to 8m, only 8m of 9m can be used at this level. The remaining 1m is now passed to L3 which does not add additional CIR based credits. In both examples, L4 would be able to reach up to 10m if upper levels are not consuming credits.
RADIUS Controlled Dynamic Policer
The RBFS RADIUS services support dynamic policer rate updates. The dynamic policer rate when configured affects only the QoS instance of the corresponding subscriber but not other subscribers.
2.5.1. Class-Policer-Map
Since RBFS supports up to 8 classes but only four policer levels, there is a need to map multiple classes to the same policer level. A class-policer-map defines such mappings. Using class-policer-map configuration, one can map any class to any supported policer level (that includes mapping multiple or all classes to the same level). Similar to a policer, a class-policer-map is attached to a profile.
![]() |
If class-to-level mapping is not configured, no policing will be applied to the traffic for that class. |
2.6. Queueing
Queuing helps to drop unwanted traffic in advance at the ingress side in case of congestion. This is to ensure bandwidth for qualified services.
RBFS supports the following queueing techniques:
-
Tail Drop (TD): This is a conventional congestion avoidance technique. When the network is congested, drop subsequent packets from the queue.
-
Weighted Random Early Detection (WRED): This technique requires configuring “Minimum Threshold”, “Maximum Threshold” and “Drop Probability”, which define the start and end range where packets may get discarded. When the average queue size is below the min threshold, no packets will be discarded. The drop_probability parameter can be used to specify the drop probability at the max threshold. When the average queue size is between the min and max threshold, the drop probability increases linearly from zero percent (at the min threshold) to drop_probability percent (at the max threshold). When the average queue size is greater than the max threshold, all packets are discarded.
-
When the average queue size is less than the “Minimum Threshold”, no packets will be discarded.
-
When the average queue size is greater than the “Maximum Threshold”, all packets are discarded.
-
When the average queue size is between “Minimum Threshold” and “Maximum Threshold”, the drop probability increases linearly from zero percent (at the min threshold) to drop probability (at the max threshold).
-
![]() |
|
2.6.1. RADIUS Controlled Dynamic Queue
As described for RBFS RADIUS Services document dynamic Queue buffer size updates are supported. The dynamic Queue buffer values when configured affect only the QoS instance of the corresponding subscriber but not other subscribers.
2.6.2. Class-Queue-Map
A class-queue-map defines the mapping of classes and queues. Class Queue Map is attached to a profile.
![]() |
|
2.6.3. Queue-Group
A Queue Group defines the Queue bundle. A Queue Group contains bundle of either 4 or 8 queues.
2.7. Scheduler
A scheduler configuration defines scheduler parameters such as type and shaping rate. The shaping rate defined for a scheduler applies to queue(s) associated with it.
The following scheduler types are supported:
-
Fair Queueing (FQ): Uses round-robin approach to select the next packet to service. This method ensures that all the flows are serviced equally. Configure scheduler type as fair_queueing to create FQ scheduler.

-
Weighted Fair Queueing (WFQ): Uses a round-robin approach but with no guarantee of flow being serviced equally (like in FQ). The rotation of the next packet to service is based on the weight that is assigned to each flow. Configure scheduler type as weighted_fair_queueing to create WFQ scheduler.
-
Supported weight: 1 to 253
-

![]() |
In any WFQ scheduler, the lower the weight, the higher the bandwidth portion is awarded. |
-
Strict Priority (SP): Uses priority-based approach to service the flow. SP schedulers are supported in “hybrid” mode only. Hybrid mode combines FQ-WFQ schedulers using strict priority.
![]() |
The priority order for SP is: strict_priority_0 > strict_priority_1 > strict_priority_2 > strict_priority_3 (where strict_priority_0 being highest priority and strict_priority_3 being lowest) |
The following SP scheduler types are supported:
-
2 Strict Priority (2SP): Uses SP between 1-FQ and 1-WFQ. There are following types of 2SP hybrid schedulers:
-
type “2sp_wfq_independent”
-
Supported weight: 1 to 63
-
-

-
type “2sp_wfq_discrete”
-
Supported weight: { 1, 2, 3 }
-

-
type “wfq_independent_2sp”
-
Supported weight: 1 to 63
-

-
type “wfq_discrete_2sp”
-
Supported weight: { 1, 2, 3 }
-

-
3 Strict Priority (3SP): maps 2-FQs and 1-WFQ
-
type: “3sp_wfq_discrete“
-
Supported weight: { 1, 2 }
-
-

-
4 Strict Priority (4SP): maps 4-FQs using SP
-
type “strict_priority"
-

2.8. Scheduler-Map
Scheduler Map defines the set of relationships between parents and children in egress scheduling hierarchy. A child in a Scheduler Map configuration can be either Queue or Scheduler. A parent in a Scheduler Map configuration can be either a Port or Scheduler.
Connection Point and Weight
Child-queue or child-scheduler in a scheduler map configuration is connected to the parent-scheduler at “connection point (CP)“. Connection point configuration also has “weight” associated with it if the parent has a WFQ scheduler corresponding to that connection point. The valid connection point value for a child to connect to parent WFQ/FQ scheduler is no_priority and to connect to parent SP/Hybrid scheduler is between strict_priority_0 to strict_priority_3 (based on a number of Strict Priority points in parent scheduler).
Connection Types
There are five connection types in a scheduler map entry:
-
queue_to_port
-
queue_to_scheduler
-
scheduler_to_scheduler
-
scheduler_to_port
![]() |
|
2.9. Shaper
Shaper is used to rate-limit the traffic at the egress. In RBFS, shapers can be attached to both Queue and Scheduler.
A shaper configuration defines the shaping rate in kilo-bits-per-seconds (kbps).
![]() |
|
2.9.1. Low-rate Shaping
The Low-rate Shaping feature performs queueing and scheduler-level traffic shaping to rates lesser than 1000 Kbps so that the higher-priority (voice) traffic to flow at optimal levels.
![]() |
Low-rate Shaping is supported only on high-priority flows, that is high-flow configuration parameter. |
RBFS Access-Leaf and Consolidated-BNG platforms have been enabled with Low-rate Shaping by default. For information about the Low-rate Shaping feature enabled platforms, see section 'Feature/Resource Usage" in the Platform Guide.
RADIUS Controlled Dynamic Shapers
RBFS RADIUS services support dynamic shaper updates. The dynamic shaper when configured affects only the QoS instance of the corresponding subscriber but not other subscribers.
2.10. Profiles
A profile configuration defines the QoS profile that is attached to either a Subscriber interface or an L3 interface.
Profile maps the following QoS constructs to a Subscriber or an L3 interface:
-
Classifier
-
Multifield (MF) Classifier
-
Class Policer Map
-
Policer
-
Class Queue Map
-
Scheduler Map
-
Remark Map
2.11. Header Compensation
2.11.1. Queue Compensation
The rate at which the packets are dequeued from a queue depends on the credit received by that queue. The source of the credit received by a queue is the egress port to which the queue is mapped. When a packet is dequeued, the credit balance is decreased by the packet size. But, the packet size that is used must be adjusted to model the packet size at the egress, rather than its actual size at the ingress queue. Thus the header compensation is used to adjust for the differences in header size between ingress queue and egress port. RBFS supports static header compensation configuration per queue (in bytes).
2.11.2. Port Compensation
Similar to queue header compensation where header compensation is performed at the per-queue level, RBFS supports the following header compensation at the per-port level:
-
Ingress Header Compensation: In line with the header compensation option that we have per-queue, RBFS supports static header compensation configuration at the ingress to be used by the policing. Header compensation changes the effective size of the packet to compensate for changes in header size (such as the CRC removal) when considering the packet for policing. Unlike queue, RBFS ingress header compensation configuration is per ingress port (in bytes).
-
Egress Header Compensation: In line with the header compensation option that we have per-queue or per-port at the ingress, RBFS supports static header compensation configuration at the egress. The egress header compensation configuration is per egress port (in bytes).
![]() |
The supported range for header compensation is -64 to +64 bytes. |
2.12. L2TP QoS
The Layer 2 Tunneling Protocol (L2TP) QoS for upstream is similar to any other locally terminated subscriber. The QoS Profile is mapped dynamically via RADIUS for the L2TP subscribers.
The L2TP QoS for Downstream requires IPv4-TOS based BA Classifier which is mapped to L2TP Tunnel. The same can be achieved by attaching l2tp-classifier-name in global QoS configuration.
forwarding-options { class-of-service { global { l2tp-classifier-name l2tp-ip; } } }
For Downstream queueing, there is no change. Queueing is applied using QoS Profile similar to locally terminated Subscribers.
The following features are supported for L2TP QoS.
-
Upstream
-
BA Classifier : IEEE 802.1p
-
Policing
-
Policer statistics
-
-
Remarking
-
![]() |
|
-
Downstream
-
BA Classifier : IPv4-TOS
-
Queueing/Scheduling/Shaping
-
Queue statistics
-
-
Remark-Map : IEEE 802.1p (Class to VLAN priority remarking)
-
2.12.1. Guidelines
-
To avoid control traffic policing/shaping, the assumption is that the IEEE 802.1p bits in Upstream or IPv4-TOS bits in Downstream will be different for control and data traffic, control traffic is expected to have the highest precedence.
-
Upstream classification is based on IEEE 802.1p bits.
-
Downstream classification is based on IPv4-TOS bits of outer IP header.
-
2.13. Multi-level H-QoS : Level-1 to Level-5
The following HQoS levels are required to build internet access services like FTTH, FTTC, or FTTB:
- Level-1 (IFP)
-
Physical Interface Shaper.
- Level-2 (PON TREE)
-
Each PON tree is a TDM based shared medium with typically ~2.5 GBit/s (GPON) shared by up to 32 consumers (ONT or DPU).
- Level-3 (DPU)
-
In case of FTTB there is a single DPU with multiple consumers via G.Fast DSL connected which requires an additional hierarchy. This level is not needed for FTTH or FTTC.
- Level-4 (ANP or Session)
-
The Access Node Port (ANP) or outer VLAN level describes a single customer line. This might be an ONT in case of FTTH or DSL interface behind a DPU in case of FTTB. This level can be also represented on PPPoE sessions as long as just one session is permitted per VLAN.
- Level-5 (QUEUE)
-
The Queue level shaper is required to limit the class-of-service bandwidth like Voice or IPTV traffic limit.
The figure below shows the diagram along with QoS representing Level-1 to Level-5 Hierarchical scheduling.

The levels 4 and 5 are configured per logical interface (i.e. subscriber-ifl or l3-ifl). Separate scheduler-map representing levels 1 to 3 connectivity shall be statically configured and mapped to the corresponding physical interface (IFP).
The child scheduler in a subscriber scheduler map is connected to the parent scheduler in a physical interface scheduler map using the following way:
-
Dynamically via RADIUS in case of dynamic subscribers like PPPoE sessions (Subscriber-IFL).
The figure below shows the same details as the preceding figure before with the different levels but from the DPU-PON-IFP scheduler-map point of view.

3. Configuring HQoS
To configure HQoS, perform the following steps which include creating a QoS profile and enabling QoS on a PPP Subscriber-Interface or L3-Interface.
-
Create Behavioral Aggregate (BA) and/or Multifield (MF) classifier to classify the network traffic at the ingress.
-
Create a policer to police the classified traffic at the ingress.
-
Create necessary class-to-policer-map to map the classes to policer-levels (mandatory for policing).
-
Create queue-groups and configure the queue numbers (4/8) in the queue group.
-
Create necessary queues with proper size to queue the classified traffic at the egress.
-
Create necessary class-to-queue-map to map the classes to queues (mandatory for queuing).
-
Specify scheduler(s) with type as required.
-
(Optional) Attach a shaper to queue(s) and/or scheduler(s).
-
Specify a scheduler map to define set of relationships between parent (scheduler or port) and child (queue/queue-group or scheduler) at the egress.
-
(optional) Create Remark-Map for QoS field remarking of the outgoing packet.
-
Define a QoS profile with classifier, multifield-classifier, class-policer-map, policer, class-queue-map, scheduler-map, and remark-map based on user requirements.
-
Specify another scheduler map to represent level-3 to level-5 hierarchy in multi-level HQoS and map it to physical interface.
-
Map the MPLS EXP classifier either to an instance or configure it as global entity.
-
(optional) Map the MPLS-IPv4/IPv6 remark-map either to an instance or configure it as global entity.
-
For downstream MPLS traffic, map the Multifield (MF) classifier as global entity.
![]() |
Priority propagation is enabled by default. To disable the Priority Propagation, we recommend doing this at the beginning and not during an active session. |
The figure below shows the dependencies between the various HQoS configuration elements.

The figure below shows the dependencies for per instance or global classifier and remark-map configurations.

The figure below shows the additional dependencies for Multi-level HQoS.

The figures below show the scheduling hierarchy example.


The following sections provide the commands and examples for configuring HQoS.
3.1. Behavior Aggregate (BA) Classifier Configuration
Syntax
Command arguments
<classifier-name> |
Specifies the classifier user-defined name |
<match-type> |
Specifies the type of traffic to classify, that is, ipv4-tos, ipv6-tc, ieee-802.1, exp |
<codepoint> |
Specifies the code-point value based on match-type |
<class> |
Specifies the traffic class as as class-0, class-1, class-2, class-3, class-4, class-5, class-6, and class-7 |
<remark-codepoint> |
Specifies the remark-codepoint that used for remarking |
Example
root@rtbrick: cfg> set forwarding-options class-of-service classifier residential-ip-classifier match-type ipv6-tc codepoint 192 remark-codepoint 224 root@rtbrick: cfg> commit
3.1.1. BA Classifier to Profile Mapping
IPv4, IPv6 and IEEE 802.1p BA classifiers are applied on a subscriber-ifl or l3ifl using the Profile Name.
Syntax
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile lac_4queues_4classes classifier-name TC_voice1 root@rtbrick: cfg> commit
![]() |
MPLS Exp classifier is applied either globally or per-instance (to support multiple VPN marking schemes) using Classifier Name. |
3.1.2. BA Classifier to Global Mapping
The MPLS classifiers can be applied globally using global configuration.
Example
root@rtbrick: cfg> set forwarding-options class-of-service global classifier-name TC_voice1 root@rtbrick: cfg> commit
3.1.3. BA Classifier to Instance Mapping
The MPLS classifiers can be applied on an instance using the instance configuration.
Example
root@rtbrick: cfg> set forwarding-options class-of-service instance ip2vrf classifier-name TC_voice1 root@rtbrick: cfg> commit
3.2. Multifield Classifier Configuration
Syntax
![]() |
In Release 20.10.2, explicit use of ordinal keyword is mandatory in Multifield Classifier configuration. |
<rule-name> |
Specifies the multifield classifier rule name |
<ordinal-value> |
Specifies the ordinal value that is used for traffic policy rule referencing |
3.2.1. IPv4 Match Configuration
Syntax
Command arguments
<rule-name> |
Specifies the multifield classifier rule name |
<ordinal-value> |
Specifies the ordinal that is used for traffic policy rule referencing |
<source-ipv4-prefix> |
Specifies the source IPv4 prefix address |
<destination-ipv4-prefix> |
Specifies the destination IPv4 prefix address |
<ip-protocol> |
Specifies the IP protocol such as UDP or TCP |
<source-l4-port> |
Specifies the Layer 4 source port number |
<destination-l4-port> |
Specifies the Layer 4 destination port number |
<ipv4-tos |
Specifies the IPv4 ToS value |
<ipv4-dscp |
Specifies the IPv4 dscp value |
<forward-class> |
Specifies the forward class name |
<mpls-traffic> |
Species the MPLS traffic |
Example
root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match destination-ipv4-prefix 198.51.100.33/24 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match direction ingress root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match forward-class class-0 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match ipv4-tos 100 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 100 match ipv4-dscp 55 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match source-ipv4-prefix 198.51.100.22/24 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match destination-l4-port 2000 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match ip-protocol TCP root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match source-l4-port 3000 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule v4 ordinal 99 match mpls-traffic true root@rtbrick: cfg> commit
3.2.2. IPv6 Match Configuration
Syntax
Command arguments
<rule-name> |
Specifies the multifield classifier rule name |
<ordinal-value> |
Specifies the ordinal that is used for traffic policy rule referencing |
<source-ipv6-prefix> |
Specifies the source IPv6 prefix address |
<destination-ipv6-prefix> |
Specifies the destination IPv6 prefix address |
<ip-protocol> |
Specifies the IP protocol such as UDP or TCP |
<source-l4-port> |
Specifies the Layer 4 source port number |
<destination-l4-port> |
Specifies the Layer 4 destination port number |
<ipv6-tc> |
Specifies the IPv6 traffic class value |
<forward-class> |
Specifies the forward class name |
<mpls-traffic> |
Specifies the MPLS traffic |
Example
root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match destination-ipv6-prefix 2001:db8:0:110::/32 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match direction ingress root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match forward-class class-1 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match ipv6-tc 200 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match source-ipv6-prefix 2001:db8:0:160::/32 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match destination-l4-port 20000 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match ip-protocol UDP root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match source-l4-port 30000 root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v6 rule v6 ordinal 200 match mpls-traffic true root@rtbrick: cfg> commit
3.2.3. IPv4/IPv6 Priority Configuration
Syntax
Command arguments
<rule-name> |
Specifies the multifield classifier rule name |
<ordinal-value> |
Specifies the ordinal that is used for traffic policy rule referencing |
<priority> |
Specify the priority value. Range: 0 - 65535. |
Example
root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule rtb_mfc ordinal 100 priority 250 root@rtbrick: cfg> commit
3.2.4. IPv4/IPv6 Action Configuration
Syntax
Command arguments
<rule-name> |
Specifies the rule name |
<ordinal-value> |
Specifies the ordinal that is used for traffic policy rule referencing |
<class> |
class-0, class-1, class-2, class-3, class-4, class-5, class-6, class-7 |
<remark-codepoint> |
Specifies the remark-map codepoint |
Example
root@rtbrick: cfg> set forwarding-options class-of-service multifield-classifier acl l3v4 rule rtb_mfc ordinal 100 action remark-codepoint 100 root@rtbrick: cfg> commit
3.2.5. MF Classifier to Profile Mapping
Syntax
Command arguments
<profile-name> |
Specifies the profile name |
<multifield-classifer-name> |
Specifies the multifield classifier name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile rtbrick_residential_profile multifield-classifier-name mf100 root@rtbrick: cfg> commit
3.2.6. MF Classifier to Global Mapping
Syntax
Example
root@rtbrick: cfg> set forwarding-options class-of-service global multifield-classifier-name mf100 root@rtbrick: cfg> commit
3.3. Remark-Map Configuration
Syntax
Command arguments
<remark-map-name> |
Specifies the remaking map name |
<remark-type> |
Specifies the remarking type - ipv4-tos, ipv6-tc, mpls-ipv4, mpls-ipv6, ieee-802.1 |
<match-codepoint> |
Specifies the match code point. NOTE: On the UfiSpace S9600-72XC, UfiSpace S9600-32X, and Delta AGCVA48S platforms, the match codepoint is TOS for VLAN IEEE-802.1p remarking. On the Edgecore AS5916-54XKS or Edgecore AS7316-26XB platforms, the match codepoint is class derived at the ingress by the classifier for VLAN IEEE-802.1p remarking. |
<color> |
Indicates the color - all, green, yellow. Color is used to set different remark-codepoint for same match-codepoint based on color marked by the Policer. |
<remark-codepoint> |
Specifies the remarking codepoint |
Example
root@rtbrick: cfg> set forwarding-options class-of-service remark-map remark-exp remark-type ipv6-tc match-codepoint 100 color all remark-codepoint 224 root@rtbrick: cfg> commit
3.3.1. Remark-map to Profile Mapping
Syntax
Command arguments
<profile-name> |
Specifies the profile name |
<remark-map-name> |
Specifies the remark map name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile rtbrick_residential_profile remark-map-name remark-exp root@rtbrick: cfg> commit
3.3.2. Global Profile Mapping
Example
root@rtbrick: cfg> set forwarding-options class-of-service global remark-map-name remark-exp root@rtbrick: cfg> commit
3.3.3. Remark-map to Instance Mapping
Example
root@rtbrick: cfg> set forwarding-options class-of-service instance ip2vrf remark-map-name remark-exp root@rtbrick: cfg> commit
3.4. Policer Configuration
Syntax
Command Arguments
<policer-name> |
Specifies the policer name. |
<levels> |
Specifies levels in the Policer. There is only support for policer levels 1 and 4. |
<type> |
Specifies the policer type. |
<flag> |
Set flags. |
level1-rates <cir> |
Set committed information rate (CIR) in kilobits per second (kbps) for level-1. The same is applicable for level-2 to level-4. |
level1-rates <pir> |
Set peak information rate (PIR) in kilobits per second (kbps) for level-1. The same is applicable for level-2 to level-4. |
level1-rates <cbs> |
Set Committed burst size (CBS) in kilobits for level-1. The same is applicable for level-2 to level-4. |
level1-rates <pbs> |
Set peak burst size (PBS) in kilobits for level-1. The same is applicable for level-2 to level-4. |
level1-rates <max-cir> |
Set the maximum for the level-1 committed information rate (CIR) in kilobits per second (kbps). The same is applicable for level-2 to level-4. |
level1-rates <max-pir> |
Set the maximum for the level-1 peak information rate (PIR) in kilobits per second (kbps). The same is applicable for level-2 to level-4. |
Example
root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential root@rtbrick: cfg> commit
Levels configuration
Example
root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential levels 4 root@rtbrick: cfg> commit
Type configuration
Example
root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential type two-rate-three-color root@rtbrick: cfg> commit
Flag configuration
Example
root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential flags color-blind root@rtbrick: cfg> commit
Level rates configuration
![]() |
The same is applicable for level-2 to level-4. |
Example
root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level1-rates cir 8000 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level1-rates cbs 800 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level1-rates pir 8000 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level1-rates pbs 800 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level3-rates cir 0 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level3-rates cbs 800 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level3-rates pir 0 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level3-rates pbs 800 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level4-rates cir 0 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level4-rates cbs 800 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level4-rates pir 0 root@rtbrick: cfg> set forwarding-options class-of-service policer policer-residential level4-rates pbs 800 root@rtbrick: cfg> commit
Example
set forwarding-options class-of-service policer policer-residential level1-rates max-cir 4500 set forwarding-options class-of-service policer policer-residential level1-rates max-pir 5500 root@rtbrick: cfg> commit
3.5. Class Policer-Map Configuration
Syntax
Command arguments
<class-policer-map-name> |
Specifies the class policer map name, |
<class> |
Specifies the class such as class-0, class-1, class-2, class-3, class-4, class-5, class-6, class-7 |
<policer-level> |
level-1, level-2, level-3, level-4 |
Example
root@rtbrick: cfg> set forwarding-options class-of-service class-policer-map policer-map-l2tp class class-0 policer-level level-4 root@rtbrick: cfg> set forwarding-options class-of-service class-policer-map policer-map-l2tp class class-1 policer-level level-3 root@rtbrick: cfg> set forwarding-options class-of-service class-policer-map policer-map-l2tp class class-2 policer-level level-2 root@rtbrick: cfg> set forwarding-options class-of-service class-policer-map policer-map-l2tp class class-3 policer-level level-1 root@rtbrick: cfg> set forwarding-options class-of-service class-policer-map policer-map-residential class class-0 policer-level level-3 set forwarding-options class-of-service class-policer-map policer-map-residential class class-1 policer-level level-4 root@rtbrick: cfg> set forwarding-options class-of-service class-policer-map policer-map-residential class class-2 policer-level level-2 root@rtbrick: cfg> set forwarding-options class-of-service class-policer-map policer-map-residential class class-3 policer-level level-1 root@rtbrick: cfg> commit
3.6. Queue Configuration
Syntax
Command arguments
<queue-name> |
Specifies the user-defined queue name |
|
<queue-size> |
Specifies the size of the queue in bytes |
|
<shaper-name> |
(Optional) Specifies the shaper that is associated with the queue |
|
WRED |
<minimum-threshold> |
Specifies the minimum average queue size to apply WRED in bytes |
<maximum-threshold> |
Specifies the maximum average queue size to apply WRED in bytes |
|
<drop-prob> |
WRED drop probability applied at the maximum threshold |
|
<bytes> |
Specifies the header compensation value |
|
decrement <true |false> |
The header compensation value is -ve (if true) or +ve (if false). |
Example
root@rtbrick: cfg> set forwarding-options class-of-service queue BE_L root@rtbrick: cfg> commit
Queue Size
Example
root@rtbrick: cfg> set forwarding-options class-of-service queue BE_L queue-size 375000 root@rtbrick: cfg> commit
Queue WRED Profile
Example
root@rtbrick: cfg> set forwarding-options queue BE_L wred minimum-threshold 15000 root@rtbrick: cfg> set forwarding-options queue BE_L wred maximum-threshold 18000 root@rtbrick: cfg> set forwarding-options queue BE_L wred drop-probability 70 root@rtbrick: cfg> commit
Queue Shaper
Example
root@rtbrick: cfg> set forwarding-options class-of-service queue IO_L shaper-name shaper_IO root@rtbrick: cfg> commit
Queue Header Compensation
Example
root@rtbrick: cfg> set forwarding-options class-of-service queue IO_L header-compensation bytes 30 root@rtbrick: cfg> set forwarding-options class-of-service queue IO_L header-compensation decrement true root@rtbrick: cfg> commit
3.7. Class Queue-Map Configuration
3.7.1. Class to Queue mapping
Syntax
Command arguments
<class-queue-map-name> |
Specifies the class queue map name |
<class> |
Specifies the class such as class-0, class-1, class-2, class-3, class-4, class-5, class-6, class-7 |
<queue-name> |
Specifies the queue name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service class-queue-map lac_4queues_L class class-0 queue-name BE_L root@rtbrick: cfg> commit
3.8. Queue-Group Configuration
Queue group size: 4 or 8
Syntax
Command arguments
<queue-group-name> |
User-defined name for the queue-group |
<queue-numbers> |
Specifies the number of queues in a Queue Group |
Example
root@rtbrick: cfg> set forwarding-options class-of-service queue-group lac_4queues_L queue-numbers 4 root@rtbrick: cfg> set forwarding-options class-of-service queue-group lac_4queues_M queue-numbers 4 root@rtbrick: cfg> set forwarding-options class-of-service queue-group lac_4queues_S queue-numbers 4 root@rtbrick: cfg> set forwarding-options class-of-service queue-group pta_4queues_L queue-numbers 4 root@rtbrick: cfg> set forwarding-options class-of-service queue-group pta_4queues_M queue-numbers 4 root@rtbrick: cfg> set forwarding-options class-of-service queue-group pta_4queues_S queue-numbers 4 root@rtbrick: cfg> set forwarding-options class-of-service queue-group pta_8queues_L queue-numbers 8 root@rtbrick: cfg> set forwarding-options class-of-service queue-group pta_8queues_M queue-numbers 8 root@rtbrick: cfg> set forwarding-options class-of-service queue-group pta_8queues_S queue-numbers 8 root@rtbrick: cfg> commit
3.9. Scheduler Configuration
Syntax
Command arguments
<scheduler-name> |
User-defined Scheduler Name |
<shaper-name> |
(Optional) User-defined Shaper Name |
<type> |
Specifies the Scheduler Type |
composite <true | false> |
(Optional) keyword to specify the scheduler as composite type |
Example
root@rtbrick: cfg> set forwarding-options class-of-service scheduler lac_4queues root@rtbrick: cfg> commit
Scheduler Type
Example
root@rtbrick: cfg> set forwarding-options class-of-service scheduler lac_4queues type strict_priority root@rtbrick: cfg> set forwarding-options class-of-service scheduler lac_4queues composite true root@rtbrick: cfg> commit
Scheduler Shaper
Example
root@rtbrick: cfg> set forwarding-options class-of-service scheduler lac_4queues shaper-name shaper_session root@rtbrick: cfg> commit
3.10. Scheduler-Map Configuration
Syntax
Command arguments
<scheduler-map-name> |
User-defined Scheduler-Map Name |
<scheduler-name> |
User-defined Scheduler Name |
<group-name> |
User-defined Queue-Group Name |
<name> |
User-defined Queue-Name |
<parent-scheduler-name> |
Name of the parent scheduler |
<connection-type> |
Specifies the type of port connection, that is, queue_to_port or scheduler_to_port |
<connection-point> |
Specifies the type of connection point, such as no_priority, strict_priority_0, strict_priority_1, strict_priority_2, strict_priority |
3.10.1. Queue to Port
Syntax
Example
root@rtbrick: cfg> set forwarding-options class-of-service scheduler-map lac_4queues_S queue-group-name lac_4queues_S queue-name BE_S port-connection queue_to_port root@rtbrick: cfg> commit
3.10.2. Scheduler to Port
Syntax
Example
root@rtbrick: cfg> set forwarding-options class-of-service scheduler-map lac_4queues_S scheduler-name olt-pon1 port-connection scheduler_to_port root@rtbrick: cfg> commit
3.10.3. Scheduler to Scheduler (same Scheduler-Map)
Syntax
Example
root@rtbrick: cfg> set forwarding-options class-of-service scheduler-map pta_4queues_comp_off_M scheduler-name olt-pon1 root@rtbrick: cfg> set forwarding-options class-of-service scheduler-map pta_4queues_comp_off_M scheduler-name olt-pon1 connection-point strict_priority_1 root@rtbrick: cfg> set forwarding-options class-of-service scheduler-map pta_4queues_comp_off_M scheduler-name olt-pon1 lac_4queues root@rtbrick: cfg> set forwarding-options class-of-service scheduler-map pta_4queues_comp_off_M scheduler-name olt-pon1 weight 1 root@rtbrick: cfg> commit
3.10.4. Queue to scheduler
Syntax
![]() |
The parent-flow configuration is optional. |
Example
root@rtbrick: cfg> set forwarding-options class-of-service queue-group-name queue_group_residential queue-name IPTV parent-scheduler rtbrick_sched_0 root@rtbrick: cfg> set forwarding-options class-of-service queue-group-name queue_group_residential queue-name IPTV parent-flow low-flow root@rtbrick: cfg> set forwarding-options class-of-service queue-group-name queue_group_residential queue-name IPTV connection-point strict_priority_0 root@rtbrick: cfg> set forwarding-options class-of-service queue-group-name queue_group_residential queue-name IPTV weight 1 root@rtbrick: cfg> commit
3.11. Shaper Configuration
Syntax
Command Arguments
<shaper-name> |
User-defined shaper name |
<shaping-rate-high> |
High flow shaping rate in kilobits per second |
<shaping-rate-low> |
Low flow shaping rate in kilobits per second |
Example
root@rtbrick: cfg> set forwarding-options class-of-service shaper session_shaper root@rtbrick: cfg> commit
High Flow Shaping Rate
To configure only high-flow shaping rate, enter the following command:
Example
root@rtbrick: cfg> set forwarding-options class-of-service shaper shaper_LD shaping-rate-high 2488000 root@rtbrick: cfg> commit
Low Flow Shaping Rate
To configure only low-flow shaping rate, enter the following command:
![]() |
|
Example
root@rtbrick: cfg> set forwarding-options class-of-service shaper shaper_LD shaping-rate-low 0 root@rtbrick: cfg> commit
3.12. Priority Propagation
Syntax
Example
root@rtbrick: cfg> set forwarding-options class-of-service global priority-propagation enable root@rtbrick: cfg> commit
3.13. Profiles Configuration
Syntax
Command arguments
<profile-name> |
User-defined QoS Profile name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile lac_4queues_4classes root@rtbrick: cfg> commit
BA Classifier
Command arguments
<profile-name> |
Profile name |
<classifier-name> |
Classifier name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile lac_4queues_4classes classifier-name residential-pbit-classifier root@rtbrick: cfg> commit
Multifield Classifier
Command arguments
<profile-name> |
Profile name |
<multifield-classifier-name> |
MF Classifier name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profiles profile-name rtbrick_residential_profile multifield-classifier-name mf100 root@rtbrick: cfg> commit
Class Policer-Map
Command arguments
<profile-name> |
Profile name |
<class-policer-map-name> |
User-defined class to policer level map name map name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile pta_8queues_comp_on_S class-policer-map-name policer-map-residential root@rtbrick: cfg> commit
Policer
Command arguments
<profile-name> |
Profile name |
<policer-name> |
User-defined Policer name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile pta_8queues_comp_on_S policer-name policer-residential root@rtbrick: cfg> commit
Class Queue-Map
Command arguments
<profile-name> |
Profile name |
<class-queue-map-name> |
User-defined class to queue map name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile pta_8queues_comp_on_L class-queue-map-name pta_8queues_L root@rtbrick: cfg> commit
Scheduler-Map
Command arguments
profile-name |
Profile name |
<scheduler-map-name> |
User-defined Scheduler map name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile pta_8queues_comp_on scheduler-map-name pta_8queues_comp_on_M root@rtbrick: cfg> commit
Remark-Map
Command arguments
<remark-map-name> |
Remarking map name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service profile pta_8queues_comp_on remark-map-name remark-exp root@rtbrick: cfg> commit
Egress Class Policer-Map
This configuration is applicable only for the L2X traffic on LAG interface.
<profile-name> |
QoS Profile Name |
<egress-class-policer-map-name> |
Egress Class Policer Map Name |
Example
set forwarding-options class-of-service profile Retail_Service-Provider egress-class-policer-map-name RSP_Class_Policer_Map
Egress Policer
This configuration is applicable only for the L2X traffic on LAG interface.
<profile-name> |
QoS Profile Name |
<egress-policer-name> |
Egress Policer Name |
Example
set forwarding-options class-of-service profile Retail_Service-Provider egress-policer-name Retail_SP_Policer
3.14. Interface Configuration
3.14.1. Logical Interface QoS Profile
QOS Profile can be mapped to an L3 interface (that is, logical interface).
Syntax
Command arguments
<ifp-Name> |
Logical Interface Name |
<unit-id> |
Configure unit which identifies sub-interface under physical interface |
<class-of-service> |
Class of service |
Example
root@rtbrick: cfg> set interface ifl-0/0/1 unit 100 class-of-service profile1 root@rtbrick: cfg> commit
3.14.2. Physical Interface Scheduler Map
Syntax
Command arguments
<name> |
Physical Interface Name |
<scheduler-map-name> |
Scheduler map name |
Example
root@rtbrick: cfg> set forwarding-options class-of-service interface ifp-0/0/3 scheduler-map-name pta_8queues_comp_on root@rtbrick: cfg> commit
3.14.3. Physical Interface Shaper
Syntax
Command arguments
<name> |
Physical Interface Name |
<shaping-rate> |
Shaping Rate |
Example
root@rtbrick: cfg> set forwarding-options class-of-service interface ifp-0/0/3 shaping-rate 10000 root@rtbrick: cfg> commit
3.14.4. Physical Interface Header Compensation
3.14.4.1. Ingress Header Compensation
Syntax
Command arguments
<name> |
Physical Interface Name |
<bytes> |
Ingress header compensation bytes |
decrement <true | false> |
Specifies whether the header compensation to be decremented |
Example
root@rtbrick: cfg> set forwarding-options class-of-service interface ifp-0/0/19 ingress-header-compensation bytes 40 root@rtbrick: cfg> set forwarding-options class-of-service interface ifp-0/0/19 ingress-header-compensation decrement true root@rtbrick: cfg> commit
3.14.4.2. Egress Header Compensation
Syntax
Command arguments
<name> |
Physical Interface Name |
<bytes> |
Egress header compensation bytes |
decrement <true | false> |
Specifies whether the header compensation to be decremented |
Example
root@rtbrick: cfg> set forwarding-options class-of-service interface ifp-0/0/19 egress-header-compensation bytes 30 root@rtbrick: cfg> set forwarding-options class-of-service interface ifp-0/0/19 egress-header-compensation decrement true root@rtbrick: cfg> commit
3.14.5. L2TP Tunnel Classifier
Syntax
Command arguments
<l2tp-classifier-name> |
Name of the L2TP classifier |
Example
root@rtbrick: cfg> set forwarding-options class-of-service global l2tp-classifier-name BA_L2TP_HEADER_CLASSIFIER_ONE root@rtbrick: cfg> commit
4. HQoS Show Running-Configuration
To display the running configuration, use the show running-configuration command.
Syntax
show running-configuration
Example
supervisor@rtbrick>LEAF01: cfg> show config forwarding-options class-of-service { "rtbrick-config:class-of-service": { "classifier": [ { "classifier-name": "BA_L2TP_UPSTREAM_CLASSIFIER_ONE", "match-type": [ { "match-type": "ieee-802.1", "codepoint": [ { "codepoint": 1, "class": "class-1" }, { "codepoint": 2, "class": "class-2" }, { "codepoint": 3, "class": "class-3" }, { "codepoint": 4, "class": "class-4" } ] } ] }, { "classifier-name": "EXP_CLASSIFIER", "match-type": [ { "match-type": "exp", "codepoint": [ { "codepoint": 0, "class": "class-0" }, { "codepoint": 1, "class": "class-1" }, { "codepoint": 2, "class": "class-2" }, { "codepoint": 3, "class": "class-3" } ] } ] } ], "class-policer-map": [ { "class-policer-map-name": "LAC_CLASS_POLICER_MAP", "class": [ { "class": "class-0", "policer-level": "level-1" }, { "class": "class-1", "policer-level": "level-1" }, { "class": "class-2", "policer-level": "level-2" }, { "class": "class-3", "policer-level": "level-2" }, { "class": "class-4", "policer-level": "level-3" }, { "class": "class-5", "policer-level": "level-3" }, { "class": "class-6", "policer-level": "level-4" }, { "class": "class-7", "policer-level": "level-4" } ] }, { "class-policer-map-name": "PTA_CLASS_POLICER_MAP", "class": [ { "class": "class-0", "policer-level": "level-1" }, { "class": "class-1", "policer-level": "level-1" }, { "class": "class-2", "policer-level": "level-2" }, { "class": "class-3", "policer-level": "level-2" }, { "class": "class-4", "policer-level": "level-3" }, { "class": "class-5", "policer-level": "level-3" }, { "class": "class-6", "policer-level": "level-4" }, { "class": "class-7", "policer-level": "level-4" } ] } ], "class-queue-map": [ { "class-queue-map-name": "CLASS_QUEUE_MAP_LAC_RESIDENTIAL", "class": [ { "class-type": "class-0", "queue-name": "LAC_IPTV" }, { "class-type": "class-1", "queue-name": "LAC_VOIP" }, { "class-type": "class-2", "queue-name": "LAC_CONTROL" }, { "class-type": "class-3", "queue-name": "LAC_LOWLOSS" } ] }, { "class-queue-map-name": "CLASS_QUEUE_MAP_PTA_RESIDENTIAL", "class": [ { "class-type": "class-0", "queue-name": "PTA_IPTV" }, { "class-type": "class-1", "queue-name": "PTA_VOIP" }, { "class-type": "class-2", "queue-name": "PTA_CONTROL" }, { "class-type": "class-3", "queue-name": "PTA_LOWLOSS" } ] } ], "global": { "classifier-name": "EXP_CLASSIFIER" }, "interface": [ { "name": "ifp-0/0/3", "scheduler-map-name": "DPU_GPON_THREE" } ], "policer": [ { "policer-name": "LAC_SUBSCRIBERS_POLICER", "flags": "color-blind", "level1-rates": { "cir": 9000, "cbs": 1000, "pir": 9200, "pbs": 1000 }, "level2-rates": { "cir": 1000, "cbs": 1000, "pir": 1200, "pbs": 1000 }, "level3-rates": { "cir": 3100, "cbs": 1000, "pir": 3500, "pbs": 1000 }, "level4-rates": { "cir": 7100, "cbs": 1000, "pir": 7500, "pbs": 1000 }, "levels": 4, "type": "two-rate-three-color" }, { "policer-name": "PTA_SUBSCRIBERS_POLICER", "flags": "color-blind", "level1-rates": { "cir": 9000, "cbs": 1000, "pir": 9200, "pbs": 1000 }, "level2-rates": { "cir": 1000, "cbs": 1000, "pir": 1200, "pbs": 1000 }, "level3-rates": { "cir": 3100, "cbs": 1000, "pir": 3500, "pbs": 1000 }, "level4-rates": { "cir": 7100, "cbs": 1000, "pir": 7500, "pbs": 1000 }, "levels": 4, "type": "two-rate-three-color" } ], "profile": [ { "profile-name": "LAC_RESIDENTIAL_PROFILE_RTBRICK", "classifier-name": "BA_L2TP_UPSTREAM_CLASSIFIER_ONE", "class-queue-map-name": "CLASS_QUEUE_MAP_LAC_RESIDENTIAL", "class-policer-map-name": "LAC_CLASS_POLICER_MAP", "policer-name": "LAC_SUBSCRIBERS_POLICER", "scheduler-map-name": "LAC_SCHEDULER_MAP_RTBRICK_RESIDENTIAL" }, { "profile-name": "PTA_RESIDENTIAL_PROFILE_RTBRICK", "class-queue-map-name": "CLASS_QUEUE_MAP_PTA_RESIDENTIAL", "remark-map-name": "REMARK_DOWN", "scheduler-map-name": "PTA_SCHEDULER_MAP_RTBRICK_RESIDENTIAL", "class-policer-map-name": "PTA_CLASS_POLICER_MAP", "policer-name": "PTA_SUBSCRIBERS_POLICER", } ], "queue": [ { "queue-name": "LAC_CONTROL", "queue-size": 250000 }, { "queue-name": "LAC_IPTV", "queue-size": 250000 }, { "queue-name": "LAC_LOWLOSS", "queue-size": 250000 }, { "queue-name": "LAC_VOIP", "queue-size": 250000 }, { "queue-name": "PTA_CONTROL", "queue-size": 250000 }, { "queue-name": "PTA_IPTV", "queue-size": 250000 }, { "queue-name": "PTA_LOWLOSS", "queue-size": 250000 }, { "queue-name": "PTA_VOIP", "queue-size": 250000 } ], "queue-group": [ { "queue-group-name": "LAC_QUEUE_GROUP_ONE", "queue-numbers": 4 }, { "queue-group-name": "PTA_QUEUE_GROUP_ONE", "queue-numbers": 4 } ], "remark-map": [ { "remark-map-name": "REMARK_DOWN", "remark-type": [ { "remark-type": "ieee-802.1", "match-codepoint": [ { "match-codepoint": 2, "color": [ { "color": "all", "remark-codepoint": 4 } ] }, { "match-codepoint": 64 } ] } ] } ], "scheduler": [ { "scheduler-name": "DPU_FOUR_SCHEDULER", "type": "fair_queueing" }, { "scheduler-name": "DPU_ONE_SCHEDULER", "type": "fair_queueing" }, { "scheduler-name": "GPON_ONE_SCHEDULER", "type": "fair_queueing" }, { "scheduler-name": "GPON_THREE_SCHEDULER", "type": "fair_queueing" }, { "scheduler-name": "LAC_ONE_SCHEDULER_RTBRICK", "shaper-name": "SESSION_SHAPER", "type": "3sp_wfq_discrete", "composite": "true" }, { "scheduler-name": "PTA_ONE_SCHEDULER_RTBRICK", "shaper-name": "SESSION_SHAPER", "type": "3sp_wfq_discrete", "composite": "true" } ], "scheduler-map": [ { "scheduler-map-name": "DPU_GPON_ONE", "scheduler-name": [ { "name": "DPU_ONE_SCHEDULER", "parent-scheduler-name": "GPON_ONE_SCHEDULER", "connection-point": "no_priority" }, { "name": "GPON_ONE_SCHEDULER" } ] }, { "scheduler-map-name": "DPU_GPON_THREE", "scheduler-name": [ { "name": "DPU_FOUR_SCHEDULER", "parent-scheduler-name": "GPON_THREE_SCHEDULER", "connection-point": "no_priority" }, { "name": "GPON_THREE_SCHEDULER" } ] }, { "scheduler-map-name": "LAC_SCHEDULER_MAP_RTBRICK_RESIDENTIAL", "queue-group-name": [ { "group-name": "LAC_QUEUE_GROUP_ONE", "queue-name": [ { "name": "LAC_CONTROL", "parent-flow": "high-flow", "parent-scheduler-name": "PTA_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_2", "weight": 2 }, { "name": "LAC_IPTV", "parent-flow": "high-flow", "parent-scheduler-name": "LAC_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_1" }, { "name": "LAC_LOWLOSS", "parent-flow": "low-flow", "parent-scheduler-name": "LAC_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_2", "weight": 1 }, { "name": "LAC_VOIP", "parent-flow": "high-flow", "parent-scheduler-name": "LAC_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_0" } ] } ], "scheduler-name": [ { "name": "LAC_ONE_SCHEDULER_RTBRICK" } ] }, { "scheduler-map-name": "PTA_SCHEDULER_MAP_RTBRICK_RESIDENTIAL", "queue-group-name": [ { "group-name": "PTA_QUEUE_GROUP_ONE", "queue-name": [ { "name": "PTA_CONTROL", "parent-flow": "high-flow", "parent-scheduler-name": "PTA_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_2", "weight": 2 }, { "name": "PTA_IPTV", "parent-flow": "high-flow", "parent-scheduler-name": "PTA_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_1" }, { "name": "PTA_LOWLOSS", "parent-flow": "low-flow", "parent-scheduler-name": "PTA_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_2", "weight": 1 }, { "name": "PTA_VOIP", "parent-flow": "high-flow", "parent-scheduler-name": "PTA_ONE_SCHEDULER_RTBRICK", "connection-point": "strict_priority_0" } ] } ], "scheduler-name": [ { "name": "PTA_ONE_SCHEDULER_RTBRICK" } ] } ], "shaper": [ { "shaper-name": "SESSION_SHAPER", "shaping-rate-high": 10000, "shaping-rate-low": 10200 } ] } }
5. HQoS Show Commands
5.1. show qos
supervisor@rtbrick>LEAF01: op> show qos classifier interface policer profile queue remark-map scheduler scheduler-map shaper subscriber
5.2. show qos classifier
supervisor@rtbrick>LEAF01: op> show qos classifier Classifier: residential-ip-classifier Active: False Match Type Codepoint Class Remark Codepoint Color ipv4-tos 0 class-0 - - ipv4-tos 32 class-1 - - ipv4-tos 64 class-2 - - ipv4-tos 96 class-3 - - ipv4-tos 128 class-4 - - ipv4-tos 160 class-5 - - ipv4-tos 192 class-6 - - ipv4-tos 224 class-7 - - ipv6-tc 0 class-0 - - ipv6-tc 32 class-1 - - ipv6-tc 64 class-2 - - ipv6-tc 96 class-3 - - ipv6-tc 128 class-4 - - ipv6-tc 160 class-5 - - ipv6-tc 192 class-6 - - ipv6-tc 224 class-7 - - Classifier: residential-pbit-classifier Active: True Match Type Codepoint Class Remark Codepoint Color ieee-802.1 0 class-0 - - ieee-802.1 1 class-1 - - ieee-802.1 2 class-2 - - ieee-802.1 3 class-3 - - ieee-802.1 4 class-4 - - ieee-802.1 5 class-5 - - ieee-802.1 6 class-6 - - ieee-802.1 7 class-7 - -
5.3. show qos classifier <classifier-name>
supervisor@rtbrick>LEAF01: op> show qos classifier residential-pbit-classifier Classifier: residential-pbit-classifier Active: True Match Type Codepoint Class Remark Codepoint Color ieee-802.1 0 class-0 - - ieee-802.1 1 class-1 - - ieee-802.1 2 class-2 - - ieee-802.1 3 class-3 - - ieee-802.1 4 class-4 - - ieee-802.1 5 class-5 - - ieee-802.1 6 class-6 - - ieee-802.1 7 class-7 - - supervisor@rtbrick>LEAF01: op> >>>>>>>> qos interface output supervisor@rtbrick>LEAF01: op> show qos interface Interface Profile ifl-0/0/10/100 pta_8queues_comp_on_S ifl-0/0/10/200 pta_8queues_comp_on_S ifl-0/0/10/300 pta_8queues_comp_on_S
5.4. show qos interface <interface-name>
supervisor@rtbrick>LEAF01: op> show qos interface ifl-0/0/10/200 Interface Profile ifl-0/0/10/200 pta_8queues_comp_on_S supervisor@rtbrick>LEAF01: op>
5.5. show qos policer
supervisor@rtbrick>LEAF01: op> show qos policer Policer: _DEFAULT_POLICER_50_MB Active: True, Type: two-rate-three-color, Levels: 1, Flags: - Level CIR(Kbps) PIR(Kbps) CBS(KB) PBS(KB) Max CIR(Kbps) Max PIR(Kbps) 1 50000 50000 33000 33000 - - 2 - - - - - - 3 - - - - - - 4 - - - - - - Policer: policer-residential Active: True, Type: two-rate-three-color, Levels: 4, Flags: - Level CIR(Kbps) PIR(Kbps) CBS(KB) PBS(KB) Max CIR(Kbps) Max PIR(Kbps) 1 8000 8000 800 800 - - 2 - - - - - - 3 - - 800 800 - - 4 - - 800 800 - -
5.6. show qos policer <policer-name>
supervisor@rtbrick>LEAF01: op> show qos policer policer-residential Policer: policer-residential Active: True, Type: two-rate-three-color, Levels: 4, Flags: - Level CIR(Kbps) PIR(Kbps) CBS(KB) PBS(KB) Max CIR(Kbps) Max PIR(Kbps) 1 8000 8000 800 800 - - 2 - - - - - - 3 - - 800 800 - - 4 - - 800 800 - - supervisor@rtbrick>LEAF01: op> >>>>>>>>>> qos profile output supervisor@rtbrick>LEAF01: op> show qos profile Profile: lac_4queues_4classes Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: lac_4queues_M Class queue map: lac_4queues_M Remark map: - Class policer map: policer-map-l2tp Mulifield classifier: - Profile: lac_4queues_4classes_L Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: lac_4queues_L Class queue map: lac_4queues_L Remark map: - Class policer map: policer-map-l2tp Mulifield classifier: - Profile: lac_4queues_4classes_S Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: lac_4queues_S Class queue map: lac_4queues_S Remark map: - Class policer map: policer-map-l2tp Mulifield classifier: - Profile: pta_4queues_comp_off Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: pta_4queues_comp_off_M Class queue map: pta_4queues_M Remark map: - Class policer map: policer-map-residential Mulifield classifier: - Profile: pta_4queues_comp_off_L Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: pta_4queues_comp_off_L Class queue map: pta_4queues_L Remark map: - Class policer map: policer-map-residential Mulifield classifier: - Profile: pta_4queues_comp_off_S Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: pta_4queues_comp_off_S Class queue map: pta_4queues_S Remark map: - Class policer map: policer-map-residential Mulifield classifier: - Profile: pta_4queues_comp_on Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: pta_4queues_comp_on_M Class queue map: pta_4queues_M Remark map: - Class policer map: policer-map-residential Mulifield classifier: -
5.7. show qos policer counter
supervisor@rtbrick>LEAF01: op> show qos policer counter lag-1 Interface Level Units Total Received Dropped lag-1 1 Packets 15773 15773 0 Bytes 2555226 2555226 0 lag-1 2 Packets 15778 15778 0 Bytes 2556036 2556036 0 lag-1 3 Packets 15775 15775 0 Bytes 2555550 2555550 0 lag-1 4 Packets 23661 23661 0 Bytes 3423166 3423166 0 lag-1-egress 1 Packets 7889 7889 0 Bytes 1420020 1420020 0 lag-1-egress 2 Packets 7889 7889 0 Bytes 1420020 1420020 0 lag-1-egress 3 Packets 7889 7889 0 Bytes 1420020 1420020 0 lag-1-egress 4 Packets 49177 49177 0 Bytes 8288974 8288974 0
5.8. show qos profile <profile>
supervisor@rtbrick>LEAF01: op> show qos profile lac_4queues_4classes Profile: lac_4queues_4classes Classifier: residential-pbit-classifier Policer: policer-residential Scheduler map: lac_4queues_M Class queue map: lac_4queues_M Remark map: - Class policer map: policer-map-l2tp Mulifield classifier: - supervisor@rtbrick>LEAF01: op>
5.9. show qos queue
supervisor@rtbrick>LEAF01: op> show qos queue Applied queues: Interface Queue Queue Size Min Thres Max Thres Drop Prob Shaper ifl-0/0/10/100 BE_S 240000 - - - - ifl-0/0/10/100 LD_S 200000 - - - shaper_LD ifl-0/0/10/100 LL_S 200000 - - - shaper_LL ifl-0/0/10/100 VO_S 50000 - - - shaper_VO ifl-0/0/10/200 BE_S 240000 - - - - ifl-0/0/10/200 LD_S 200000 - - - shaper_LD ifl-0/0/10/200 LL_S 200000 - - - shaper_LL ifl-0/0/10/200 VO_S 50000 - - - shaper_VO ifl-0/0/10/300 BE_S 240000 - - - - ifl-0/0/10/300 LD_S 200000 - - - shaper_LD ifl-0/0/10/300 LL_S 200000 - - - shaper_LL ifl-0/0/10/300 VO_S 50000 - - - shaper_VO Configured queues: Queue Queue Size Min Thres Max Thres Drop Prob Shaper BE_L 375000 - - - - BE_M 375000 - - - - BE_S 240000 - - - - CO_L 312500 - - - - CO_M 156250 - - - - CO_S 50000 - - - - IO_L 312500 - - - shaper_IO IO_M 156250 - - - shaper_IO IO_S 50000 - - - shaper_IO LD_L 1250000 - - - shaper_LD LD_M 625000 - - - shaper_LD LD_S 200000 - - - shaper_LD LL_L 1250000 - - - shaper_LL LL_M 625000 - - - shaper_LL LL_S 200000 - - - shaper_LL VO_L 312500 - - - shaper_VO VO_M 156250 - - - shaper_VO VO_S 50000 - - - shaper_VO free_6_L 375000 - - - - free_6_M 375000 - - - - free_6_S 240000 - - - - free_7_L 375000 - - - - free_7_M 375000 - - - - free_7_S 240000 - - - -
5.10. show qos queue <interface-name>
supervisor@rtbrick>LEAF01: op> show qos queue ifl-0/0/10/100 Applied queues: Interface Queue Queue Size Min Thres Max Thres Drop Prob Shaper ifl-0/0/10/100 BE_S 240000 - - - - ifl-0/0/10/100 LD_S 200000 - - - shaper_LD ifl-0/0/10/100 LL_S 200000 - - - shaper_LL ifl-0/0/10/100 VO_S 50000 - - - shaper_VO
5.11. show qos queue counter
supervisor@rtbrick>LEAF01: op> show qos queue counter Interface Queue Group Queue Class Units Received Queued Dropped Bytes 0 0 0 ifl-0/1/32/6 olt-dpu-mgmt-queues OLT_MGMT 0 Packets 0 0 0 Bytes 0 0 0 ifl-0/1/33/4 olt-dpu-mgmt-queues OLT_MGMT 0 Packets 0 0 0 Bytes 0 0 0 ifl-0/1/33/6 olt-dpu-mgmt-queues OLT_MGMT 0 Packets 0 0 0 Bytes 0 0 0 ppp-0/1/30/72339069014638594 pta-4queues BE_PTA 0 Packets 941111 288270 652841 Bytes 942823712 288837428 653986284 ppp-0/1/30/72339069014638594 pta-4queues LD_PTA 2 Packets 938859 446474 492385 Bytes 942614436 448259896 494354540 ppp-0/1/30/72339069014638594 pta-4queues LL_PTA 1 Packets 938851 480506 458345 Bytes 942606404 482428024 460178380 ppp-0/1/30/72339069014638594 pta-4queues VO_PTA 3 Packets 3667257 673116 2994141 Bytes 953486820 175010160 778476660 l2bsa-0/1/30/281479271677953 l2bsa-4queues BE_L2BSA 0 Packets 0 0 0 Bytes 0 0 0 l2bsa-0/1/30/281479271677953 l2bsa-4queues LD_L2BSA 2 Packets 0 0 0 Bytes 0 0 0 l2bsa-0/1/30/281479271677953 l2bsa-4queues LL_L2BSA 1 Packets 0 0 0 Bytes 0 0 0
5.12. show qos queue counter <interface-name>
supervisor@rtbrick>LEAF01: op> show qos queue counter ifl-0/1/30/6 Interface Queue Group Queue Class Units Received Queued Dropped ifl-0/1/30/6 olt-dpu-mgmt-queues OLT_MGMT 0 Packets 0 0 0 Bytes 0 0 0
5.13. show qos scheduler
supervisor@rtbrick>LEAF01: op> show qos scheduler Scheduler Type Shaper Composite Active fff strict_priority - False False fffd strict_priority - False False lac_4queues strict_priority - True False olt-pon1 fair_queueing - False False olt-pon10 fair_queueing - False False olt-pon11 fair_queueing - False False olt-pon12 fair_queueing - False False olt-pon13 fair_queueing - False False olt-pon14 fair_queueing - False False olt-pon15 fair_queueing - False False olt-pon16 fair_queueing - False False olt-pon17 fair_queueing - False False olt-pon18 fair_queueing - False False olt-pon19 fair_queueing - False False olt-pon2 fair_queueing - False False olt-pon20 fair_queueing - False False olt-pon21 fair_queueing - False False olt-pon22 fair_queueing - False False olt-pon23 fair_queueing - False False olt-pon24 fair_queueing - False False olt-pon25 fair_queueing - False False olt-pon26 fair_queueing - False False olt-pon27 fair_queueing - False False olt-pon28 fair_queueing - False False olt-pon29 fair_queueing - False False olt-pon3 fair_queueing - False False olt-pon30 fair_queueing - False False olt-pon31 fair_queueing - False False olt-pon32 fair_queueing - False False olt-pon4 fair_queueing - False False olt-pon5 fair_queueing - False False olt-pon6 fair_queueing - False False olt-pon7 fair_queueing - False False olt-pon8 fair_queueing - False False olt-pon9 fair_queueing - False False pta_4queues_comp_off strict_priority - True False pta_4queues_comp_on strict_priority - True False pta_8queues_comp_off strict_priority - True False pta_8queues_comp_on strict_priority - True False supervisor@rtbrick>LEAF01: op>
5.14. show qos scheduler <scheduler-name>
supervisor@rtbrick>LEAF01: op> show qos scheduler lac_4queues Scheduler Type Shaper Composite Active lac_4queues strict_priority - True False
5.15. show qos scheduler-map
supervisor@rtbrick>LEAF01: op> show qos scheduler-map Scheduler-Map: lac_4queues_S Scheduler: fff Scheduler: strict_priority Queue: LD_S strict_priority_1 Scheduler: pta_4queues_comp_off Scheduler: strict_priority Queue: LL_S strict_priority_1 Queue: VO_S strict_priority_0 Scheduler: fffd Scheduler: strict_priority Queue: BE_S strict_priority_0 Scheduler-Map: schedmap-olt Scheduler: olt-pon1 Scheduler: fair_queueing Scheduler: olt-pon2 Scheduler: fair_queueing Scheduler: olt-pon3 Scheduler: fair_queueing Scheduler: olt-pon4 Scheduler: fair_queueing Scheduler: olt-pon5 Scheduler: fair_queueing Scheduler: olt-pon6 Scheduler: fair_queueing Scheduler: olt-pon7 Scheduler: fair_queueing Scheduler: olt-pon8 Scheduler: fair_queueing Scheduler: olt-pon9 Scheduler: fair_queueing Scheduler: olt-pon10 Scheduler: fair_queueing Scheduler: olt-pon11 Scheduler: fair_queueing Scheduler: olt-pon12 Scheduler: fair_queueing Scheduler: olt-pon13 Scheduler: fair_queueing Scheduler: olt-pon14 Scheduler: fair_queueing Scheduler: olt-pon15 Scheduler: fair_queueing Scheduler: olt-pon16 Scheduler: fair_queueing Scheduler: olt-pon17 Scheduler: fair_queueing Scheduler: olt-pon18 Scheduler: fair_queueing Scheduler: olt-pon19 Scheduler: fair_queueing Scheduler: olt-pon20 Scheduler: fair_queueing Scheduler: olt-pon21 Scheduler: fair_queueing Scheduler: olt-pon22 Scheduler: fair_queueing Scheduler: olt-pon23 Scheduler: fair_queueing Scheduler: olt-pon24 Scheduler: fair_queueing Scheduler: olt-pon25 Scheduler: fair_queueing Scheduler: olt-pon26 Scheduler: fair_queueing Scheduler: olt-pon27 Scheduler: fair_queueing Scheduler: olt-pon28 Scheduler: fair_queueing Scheduler: olt-pon29 Scheduler: fair_queueing Scheduler: olt-pon30 Scheduler: fair_queueing Scheduler: olt-pon31 Scheduler: fair_queueing Scheduler: olt-pon32 Scheduler: fair_queueing Scheduler: olt-pon33 Scheduler: False Scheduler-Map: lac_4queues_L Scheduler: lac_4queues Scheduler: strict_priority Queue: BE_L strict_priority_1 Queue: LD_L strict_priority_1 Queue: LL_L strict_priority_2 Queue: VO_L strict_priority_0
5.16. show qos scheduler-map <scheduler-map>
supervisor@rtbrick>LEAF01: op> show qos scheduler-map lac_4queues_S Scheduler-Map: lac_4queues_S Scheduler: fff Scheduler: strict_priority Queue: LD_S strict_priority_1 Scheduler: pta_4queues_comp_off Scheduler: strict_priority Queue: LL_S strict_priority_1 Queue: VO_S strict_priority_0 Scheduler: fffd Scheduler: strict_priority Queue: BE_S strict_priority_0
5.17. show qos shaper
supervisor@rtbrick>LEAF01: op> show qos shaper Shaper High Rate(Kbps) Low Rate(Kbps) High Burst(Kb) Low Burst(Kb) Active pon-shaper 2488000 - - - True shaper_IO - 1000000 - - True shaper_LD 1000000 - - - True shaper_LL 1000000 - - - True shaper_VO 1000000 - - - True shaper_session 1000000 100 - - True
5.18. show qos shaper <shaper-name>
supervisor@rtbrick>LEAF01: op> show qos shaper shaper_session Shaper High Rate(Kbps) Low Rate(Kbps) High Burst(Kb) Low Burst(Kb) Active shaper_session 1000000 100 - - False
5.19. show qos multifield-classifier
supervisor@rtbrick>LEAF01: op> show qos multifield-classifier Multifield Classifier: global-mfc ACL type: multifield_ipv4 Ordinal: 10000 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 224 Action: Forward class: class-7 Priority: 1000 Ordinal: 9000 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 192 Action: Remark codepoint: 184 Forward class: class-6 Ordinal: 6200 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 160 Action: Remark codepoint: 184 Forward class: class-5 Ordinal: 5200 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 64 Action: Remark codepoint: 184 Forward class: class-2 Ordinal: 6000 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 96 Action: Remark codepoint: 184 Forward class: class-3 Ordinal: 5000 Match: Source IPv4 prefix: 198.51.100.2/24 Action: Remark codepoint: 184 Forward class: class-0 Ordinal: 6100 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 128 Action: Remark codepoint: 184 Forward class: class-4 Ordinal: 5100 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 32 Action: Remark codepoint: 184 Forward class: class-1 Ordinal: 100 Match: Source IPv6 prefix: 2001:db8:0:100::/32 IPv6 TC: 224 Action: Remark codepoint: 196 Forward class: class-3 Multifield Classifier: ipoe-double-play ACL type: multifield_ipv4 Ordinal: 5200 Match: Destination IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 160 Action: Remark codepoint: 224 Forward class: class-2 Ordinal: 5000 Match: Destination IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 64 Action: Remark codepoint: 224 Forward class: class-0 Ordinal: 5300 Match: Destination IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 192 Action: Remark codepoint: 224 Forward class: class-3 Ordinal: 5100 Match: Destination IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 96 Action: Remark codepoint: 224 Forward class: class-1 supervisor@rtbrick>LEAF01: op>
5.20. show qos multifield-classifier <multifield-classifier-name>
supervisor@rtbrick>LEAF01: op> show qos multifield-classifier global-mfc Multifield Classifier: global-mfc ACL type: multifield_ipv4 Ordinal: 10000 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 224 Action: Forward class: class-7 Priority: 1000 Ordinal: 9000 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 192 Action: Remark codepoint: 184 Forward class: class-6 Ordinal: 6200 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 160 Action: Remark codepoint: 184 Forward class: class-5 Ordinal: 5200 Match: Source IPv4 prefix: 198.51.100.2/24 IPv4 TOS: 64 Action: Remark codepoint: 184 Forward class: class-2 supervisor@rtbrick>LEAF01: op>
©Copyright 2023 RtBrick, Inc. All rights reserved. The information contained herein is subject to change without notice. The trademarks, logos and service marks ("Marks") displayed in this documentation are the property of RtBrick in the United States and other countries. Use of the Marks are subject to RtBrick’s Term of Use Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to other parties is for informational purposes only.