
CTRLD Implementation
Guide
Version 2019.1.0, 18 October 2019

Registered Address Support Sales

26, Kingston Terrace, Princeton,
New Jersey 08540, United States

+91 80 4850 5445

http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2020 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick’s Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

CTRLD Implementation Guide

1

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

Table of Contents
1. Overview . 3

1.1. The CTRLD Binary . 3

1.2. The Configuration File . 4

1.3. The CTRLD Logs. 5

1.4. The CTRLD API . 5

2. CTRLD and Management. 7

2.1. Container Management . 7

2.2. Image Management . 8

2.2.1. Image Folder . 9

2.2.2. Image Download . 9

2.3. Container and Element Management . 9

2.4. Jobs and Callbacks . 10

2.5. Pub Sub . 10

CTRLD Implementation Guide

2

1. Overview
This document gives an inside to the Container management of CTRLD and the
interaction between the different systems and CTRLD.

The CTRLD (control daemon) is the single point of entry to an RtBrick router
running the RBFS software. CTRLD primarily uses REST to control the router.
CTRLD is also responsible for gathering data from the router and forwarding this
information to other systems.

This role for CTRLD is shown in Figure 1.

Figure 1. Overview of CTRLD

The CTRLD plays these different roles because CTRLD is the entry point for all of
the different components interacting within or outside of a box. So, CTRLD can be
thought of in the following way:

• CTRLD is the controller of a router box running RBFS

• CTRLD is the controller of an element within the box, such as LXC containers

• CTRLD is the gateway to an RBFS image and package

You can run multiple instances of the CTRLD on a given box.

1.1. The CTRLD Binary

In a production environment, the ctrld binary starts with default parameters. This
service is called rtbrick-ctrld. The ctrld -h command shows these default
parameters, highlighted in red in the listing below.

CTRLD Implementation Guide

3

$ ctrld -h
Usage of ctrld:
 -addr string
 HTTP network address (default ":19091")
 -config string
 Configuration for the ctrld (default
"/etc/rtbrick/ctrld/config.json")
 -lxccache string lxc Image Cache folder (default "/var/cache/rtbrick")
 -servefromfs
 Serves from filesystem, is only used for development
 -version
 Returns the software version

The command ctrld -version displays the installed version of the daemoin. The
version should be tagged correctly in the repository.

The CTRLD configuration is in the JSON file at /etc/rtbrick/ctrld/config.json. You can
cat the file to display the contents, as shown below:

$ cat /etc/rtbrick/ctrld/config.json
{
 "rbms_enable": true,
 "rbms_host": "http://192.168.200.45",
 "rbms_authorization_header": "Basic YWRtaW46YWRtaW4=",
"rbms_heart_beat_interval": 600
}

1.2. The Configuration File

The CTRLD configuration file is a flat JSON file. The properties are described in
Table 1.

Table 1. CTRLD Configuration File Properties

Property Description Default Value

rbms_enable To enable all RBMS
outgoing messages

false

rbms_host RBMS base url e.g.:
http://192.168.202.44:900
9

rbms_authorization_head
er

RBMS Authorization
Header is set to all calls
which are outgoing to
RBMS

nil

rbms_heart_beat_interval RBMS heartbeat Interval
in seconds. Nil leads in no
heartbeat.

nil

CTRLD Implementation Guide

4

http://192.168.202.44:9009
http://192.168.202.44:9009

Property Description Default Value

The calls to rbms are made via a retry handler. After an unsuccessful attempt
there will be done a retry call, the time between the attempt is exponential and
based on the attempt number and limited by the provided minimum and
maximum durations.

rbms_retry_wait_min Min wait time in seconds 2

rbms_retry_wait_max Max wait time in seconds 300

rbms_retry_max Max retries 10

The calls to the callbacks are made via a retry handler. After an unsuccessful
attempt there will be done a retry call, the time between the attempt is
exponential and based on the attempt number and limited by the provided
minimum and maximum durations.

callback_retry_wait_min Min wait time in seconds 2

callback_retry_wait_max Max wait time in seconds 300

callback_retry_max Max retries 10

Graylog Configuration

graylog_enable To enable all Graylog
outgoing messages

false

graylog_url Graylog url e.g.
http://127.0.0.1:12201/gelf

graylog_heart_beat_interv
al

Graylog heartbeat Interval
in seconds. Nil leads in no
heartbeat.

nil

1.3. The CTRLD Logs

The log files for CTRLD are stored at /var/log/rtbrick-ctrld.log, and are rotated with
logrotate. The log rotation configuration can be found at /etc/logrotate.d/rtbrick-
ctrld.

1.4. The CTRLD API

CTRLD is built with the Domain Driven Design (DDD) Principles in mind. The model
is split into modules which, in DDD, are called Bounded Contexts. Also, the CTRLD
API is divided in such modules.

The CTRLD API is a rest API that leverages the Richardson Maturity Model level 2.

You can find an aways actual API overview within each running CTRLD instance at:

http://<hostname>:<port>/public/openapi/

CTRLD Implementation Guide

5

http://127.0.0.1:12201/gelf
https://martinfowler.com/articles/richardsonMaturityModel.html

The CTRLD API has been redesigned when we ported it to the golang programming
language. However, to provide some extended backward compatibility, there is a
module called “AntiCorruptionLayer” to address this problem.

 These older APIs might be deleted soon, so use them with caution.

Table 1 describes the API tags used to group the APIs by their modules.

Table 2. REST API Tag Descriptions

API Tag Description

anti_corruption_lay
er

These APIs are all deprecated. They exist only for older
systems and backward compatibility.

client These are not the APIs that CTRLD provides, but the APIs that
a client has to provide to use the callback function of CTRLD.

ctrld/config Configure CTRLD

ctrld/containers Handle LXC containers (start, stop, delete, list)

ctrld/elements Handle elements (start, stop, delete, upgrade, config)

ctrld/rbfs Handle calls which came from the RBFS

ctrld/images Handle all requests regarding RBFS images. (download,
delete, list)

ctrld/jobs Get information about asynchronous tasks.

ctrld/info General info about CTRLD, like version, image and so on.

ctrld/events For the publish/subscribe sub model, register for an event,
and stay informed about events.

ctrld/system Communication with the underlying host system.

rbfs Communication with an RBFS element such as Proxy, File
Handling, and so on.

CTRLD Implementation Guide

6

https://golang.org/

2. CTRLD and Management
This section describes CTRLD container and image management.

2.1. Container Management

The CTRLD is responsible for container management. But the RBMS is not aware of
the containers. Therefore, a proper mapping to containers is needed. This section
describes the correlation between the RBMS, CTRLD and LXC.

The RBMS has various elements, each identified by name. Each element describes
a running RBFS instance. It is possible to upgrade and downgrade elements.

Each element in RBMS has services. That is a bit confusing, because the services
not only describe the services of an element itself, but also describe the services
running the element.

The root aggregate of the model is the element container, whether there is one
element on an ONL or not. The general structure of daemons and containers in
the RBFS service model is shown in Figure 2.

Figure 2. Service Model for RBFS

In case that an element is up- or downgraded the old container is saved as an
outdated container. Therefore, it is possible to recover an outdated container, if an
upgrade fails or the upgrade has errors.

It is important to understand the difference between an element and a container.

CTRLD Implementation Guide

7

In an RDFS context, a container is always an lxc-container. The containers in a
whitebox are simply called “rtbrick”. In order to make them useful for the RBMS,
they need a proper name.

You configure the element-name and the pod-name of a container in the lxc-
container root directory (/var/lib/lxc/rtbrick/element.confg).

This method provides many advantages:

• Container updates

• Prepare an update of the container (for example, rtbrick-v2)

• Stop container version 1 and start container version 2

• This allows fast updates of containers: if the update is corrupt, stop the
second container and restart the first container.

• Renaming of elements

If there is no element.config available, then the element name is the name of the
container.

2.2. Image Management

The images are saved on the ONL under /var/cache/lxc/rtbrick.

There is only one subfolder for each image: /var/cache/lxc/rtbrick/<image-folder>

The image is identified by a series of fields, described in Table 2.

Table 3. Image Identification Fields and Descriptions

Field Description

organization Organization that issued the image as reverse domain name
(e.g. net.rtbrick).

category Category which can be used to describe the purpose of the
image. (e.g. customer-production)

platform Describes the Hardware Platform.

 vendor_name Vendor of the platform

 model_name Model of the platform

image_type Image type (for example, LXC)

image_name Image name (for example, rbfs)

element_role Element role the image was built for (for example, LEAF).

image_version Image revision to be activated
{major}.{minor}.{patch}-{prerelease}

CTRLD Implementation Guide

8

2.2.1. Image Folder

The image folder contains the following files:

• A metadata.YAML which identifies the image. There can also be additional
attributes in the file, but the attributes to identify an image have to be in the
file. An example of the RtBrick properties are shown below.

rtbrick_properties:
 organization: net.rtbrick
 category: customer-production
 platform:
 vendor_name: virtual/tofino
 model_name: virtual
 image_type: LXC
 role: LEAF
 image_name: rtbrick-rbfs
 image_version: 19.13.4-master

• A subfolder named rootfs

• The config.tpl file. This file is used to create the configuration file with the
respective data in the template. You can use the following syntax to add a
property from the dictionary provided by ctrld. Therefore, lxc.rootfs.path =
dir:{{index . "rootfs”}} results in lxc.rootfs.path = dir:/var/lib/lxc/mega/rootfs

2.2.2. Image Download

CTRLD provides functionality to download images from a repository, therefore the
url to the image is provided by the caller.

Optionally also the checksum algorithm and the value can be provided, after
downloading the image, the checksum will be verified.

2.3. Container and Element Management

LXC Containers are identified as elements if they have a metadata.YAML with the
fields described above. These LXC containers can also be revised containers, which
are created when an upgrade of a container takes place. The revised element is
named using the element name and a timestamp: revised-{element-name}-
{timestamp}.


It is not yet possible to rename an element. See How to rename
LXD / LXC container for more details.

A template engine to update the LXC configuration template is used for the
container. Each container has the files in the /var/lib/lxc/{container-name} folder,
as shown in Table 3.

CTRLD Implementation Guide

9

https://www.cyberciti.biz/faq/how-to-rename-lxd-lxc-linux-container/
https://www.cyberciti.biz/faq/how-to-rename-lxd-lxc-linux-container/

Table 4. Files in the Container Folder

File Description

config.tpl Template for lxc configuration
This file comes directly out of the image, and is stored in this
folder for renaming the container. Because a rename
recreates the config file.

config.data Data which was used to fill the templates (config, hostconfig).
This file is saved by ctrld, it is used by rename the container,
because a rename recreates the configfile.

metadata.yaml Information about the image the container was built from.
And a lot more information.

The status of an image can be CACHED or ACTIVE, as described in Table 4.

Table 5. Image Status States and Meaning

Status Description

CACHED This image is on the ONL

ACTIVE This image is on the ONL and is the image used for the actual
container instance.

2.4. Jobs and Callbacks

The Jobs API is needed for asynchronous API calls. Asynchronous API calls can be
used with a callback, so that the caller is informed when the job is finished, or can
be used with a polling mechanism. The Job API polling asks if the job is finished.
This is sometimes easier to implement, especially for scripts like robot.

The callback mechanism uses a retry handler. The retry handler performs
automatic retries under the following conditions:

• If an error is returned by the client (such as a connection error), then the retry
is invoked after a waiting period

• If a 500-range response code is received (except for 501 “not implemented”),
then the retry is invoked after a waiting period.

• For a 501 response code and all other possibilities, the response is returned
and it is up to the caller to interpret the reply.

2.5. Pub Sub

CTRLD uses a publisher and subscriber model. This model is needed for features
not implemented directly in CTRLD, such as ZTP.

So, for example, the ZTP daemon (ZTPD) can subscribe to events, and ZTPD is

CTRLD Implementation Guide

10

informed if the event occurs in CTRLD.

CTRLD Implementation Guide

11

	CTRLD Implementation Guide
	Table of Contents
	1. Overview
	1.1. The CTRLD Binary
	1.2. The Configuration File
	1.3. The CTRLD Logs
	1.4. The CTRLD API

	2. CTRLD and Management
	2.1. Container Management
	2.2. Image Management
	2.2.1. Image Folder
	2.2.2. Image Download

	2.3. Container and Element Management
	2.4. Jobs and Callbacks
	2.5. Pub Sub

