
RBFS Time Series Database
Configuration Guide
Version 21.6.1, 25 June 2021

Registered Address Support Sales

26, Kingston Terrace, Princeton,
New Jersey 08540, United States

+91 80 4850 5445

http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2021 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick’s Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

RBFS Time Series Database Configuration Guide

1

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

Table of Contents
1. Introduction. 3

1.1. Architectural Overview . 3

1.1.1. Router deployment model . 4

1.1.2. Storage efficiency . 5

1.1.3. Alerting . 5

1.1.4. Role of CTRLD. 5

1.1.4.1. Service state and Proxy. 6

1.1.4.2. Alert distribution . 6

1.1.4.3. API for Configuration. 6

1.1.5. Federation deployment model . 6

2. Installation . 9

3. Configuring Time Series Database. 10

3.1. Metric . 10

3.1.1. Metric Data Model. 10

3.1.2. Configuring Metrics. 12

3.1.2.1. Configuring Metrics using Command Line Interface 12

3.1.2.1.1. Metric Configuration . 12

3.1.2.1.2. Metric Filter Configuration . 14

3.1.2.1.3. Metric Attribute Label Configuration . 15

3.1.2.1.4. Metric Attribute Filter Configuration. 16

3.1.2.1.5. Metric Label Filter Configuration . 17

3.2. Alert. 18

3.2.1. Alert Data Model . 19

3.2.2. Configuration . 20

3.2.2.1. Configuring Alert Using CLI . 20

3.2.3. Graylog Alert Distribution . 22

RBFS Time Series Database Configuration Guide

2

1. Introduction
Operational-state visibility is key for troubleshooting, testing, monitoring and
capacity management. This requires to sample router metrics periodically.
Ingestion of time-series data allows to ask interesting operational queries.

Examples:

• A slightly increasing memory consumption over time while overall PPPoE
session count has not changed, for example, is an indication for a memory
leak.

• If the 5 Minute chassis temperature is too high, this might be an indication for
an imminent hardware breakdown and the switch hardware must be replaced.

• If utilization of all fabric interfaces is constantly touching the 80% saturation
levels then new fabric links must be commissioned.

• High input traffic with degradation of optical receive levels might be an
indication of running very close to optical budget.

The challenge is to sample all these information efficiently in terms of disk,
memory and CPU utilization while providing comprehensive query and reporting
functionality.

1.1. Architectural Overview

The RBFS telemetry architecture is based on Prometheus as an open-source
systems monitoring and alerting toolkit. Prometheus is designed to pull metrics
periodically, and save them efficiently. It allows to analyze the metrics with a
powerful query language called PromQL. Also an optional alert management is
available. There is opportunity to tie it together with own services to integrate it
into the system landscape. Data should have short retention times (default 15d).

This fits perfectly to the needs in BDS. The figure below shows how it fits in an
overall architecture.

RBFS Time Series Database Configuration Guide

3

https://prometheus.io/docs/prometheus/latest/querying/basics/

Figure 1. Prometheus in RBFS

To mitigate the short retention times, which fits to BDS but not in an overall
telemetry process, the data can be stored in a centralized storage database (for
example, Influx) this can be done by federation or via remote storage adapters. To
distribute the alert messages from prometheus, CTRLD functions as "alertmanager
webhook receiver", which takes the alert and distributes it to a log management
tool (graylog).

1.1.1. Router deployment model

Prometheus DB is run on the router as a dedicated process. It ships with a
package-time configuration to poll each BDS capable speaker at periodic intervals.
Initially the periodic interval is 1 second. The Prometheus Exposition format is a
very simple HTTP based GET query which asks a given BD speaker "Give me all
your metrics". Each BD subscribes to the global.time-series.metric.config table, which
contains an operator-configurable list of BDS targets. Only the BDS which is master
of a table responds. Next Prometheus polls the BD using the /metrics URL.

RBFS Time Series Database Configuration Guide

4

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md

Figure 2. Prometheus in RBFS with the different scrape target

1.1.2. Storage efficiency

On an average Prometheus uses only around 1-2 bytes per sample. Thus, to plan
the capacity of a Prometheus server, you can use the rough formula:

needed_disk_space = retention_time_seconds * ingested_samples_per_second *
bytes_per_sample

The single binaries disk space:

-rwxr-xr-x 1 root root 27M Sep 2 22:51 alertmanager +
-rwxr-xr-x 1 root root 81M Sep 2 22:51 prometheus +
-rwxr-xr-x 1 root root 49M Sep 3 19:55 promtool

Promtool is needed to test the configurations before set them to prometheus.

1.1.3. Alerting

The alerting is configured through Prometheus. For more information, see
alertmanager.

1.1.4. Role of CTRLD

Figure-4 provides an overview of the role of CTRLD.

RBFS Time Series Database Configuration Guide

5

https://prometheus.io/docs/alerting/alertmanager/

Prometheus and Alertmanager register themself in CTRLD, so that CTRLD is aware
of these two services.

1.1.4.1. Service state and Proxy

The registration of the services gives 2 advantages:

1. The operational state is an indicator if the service is up and running.

2. The proxy functionality of CTRLD can be used for prometheus and
alertmanager.

The proxy functionality is used for querying prometheus directly:

curl
'http://192.168.202.125:19091/api/v1/rbfs/elements/rtbrick/services/PROMETHEU
S/proxy/api/v1/query?query=up' | jq .

But it is also used for federation and therefore the following URL is used:

http://192.168.202.125:19091/api/v1/rbfs/elements/rtbrick/services/PROMETHEUS
/proxy/federate

1.1.4.2. Alert distribution

CTRLD can forward the alerts from the alertmanager to graylog or any other REST
endpoint.

1.1.4.3. API for Configuration

CTRLD provides a REST API Endpoint for configuration of alerts and metrics.

1.1.5. Federation deployment model

RBFS Time Series Database Configuration Guide

6

Figure 3. Federation of Prometheus, Alertmanager and graylog target

Prometheus is intended to have at least one instance per datacenter usually; also
with a global Prometheus for global graphing or alerting. Federation allows for
pulling metrics and aggregations up the hierarchy.

In the global Prometheus config, this timeseries is pulled:

prometheus.yml:

global:
 scrape_interval: 60s # By default, scrape targets every 15 seconds.
 # A scrape configuration containing exactly one endpoint to scrape:
scrape_configs:
 - job_name: "federate"

 honor_labels: true
 metrics_path: '/federate'
 params:
 'match[]':
 - '{job="bds"}'
 scrape_interval: 15s
 # Patterns for files from which target groups are extracted.
 file_sd_configs:
 - files:
 - ./bds.target.yml
 refresh_interval: 5m

The match[] here requests all BDS job time series. By following this job naming

RBFS Time Series Database Configuration Guide

7

convention, you do not have to adjust the config every time when there is a new
aggregating rule.

The targets itself can be configured in a separate file.

bds.target.yml:

- targets: ['192.168.202.125:19091']
 labels:
 __metrics_path__:
"/api/v1/rbfs/elements/rtbrick/services/PROMETHEUS/proxy/federate"
 box: 125_rtbrick

RBFS Time Series Database Configuration Guide

8

2. Installation
The RtBrick fullstack comes with a ready to use tsdb instance. So no more
installation on RBFS has to be done.

For federation of metrics, a global prometheus instance is needed. To visualize the
metrics a Grafana instance has to be installed, and to get the alert messages, a
graylog instance has to be set up. This document does not contain an installation
guide for that systems.

The information about configuring a federation Pprometheus to scrape metrics
from a RBFS installation is described in the Federation deployment model section.

RBFS Time Series Database Configuration Guide

9

3. Configuring Time Series
Database
The following section describes how to configure the system to gather metrics and
alerts out of the system.

3.1. Metric

To better understand the Data Model have a look at the Prometheus Data Model.

3.1.1. Metric Data Model

In RBFS it is possible to turn each table attribute into a metric.


When you export the time-series metric data for an attribute
which has more than 50 label values (user-defined, default labels),
you may see truncated data in the exported metric.

The following table describes the configuration model:

Metric

metric_name Name of the metric (metric name conventions).

That is the unique identifier for the metric.

table_name Table Name for which the metric is designed, could also be a
regular expression.

bds_metric_type • object-metric: if the metric should be gathered from
regular table attributes

• index-metric: if the metric should be gathered out of an
attribute of an index table

index_name Name of the index, if the bds_metric_type is index-metric.

RBFS Time Series Database Configuration Guide

10

https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/practices/naming/

metric_type • gauge: is a metric that represents a single numerical
value that can arbitrarily go up and down.
Gauges are typically used for measured values like
temperatures or current memory usage, but also
"counts" that can go up and down, like the number of
concurrent requests.

• counter: is a cumulative metric that represents a single
monotonically increasing counter whose value can only
increase or be reset to zero on restart. For example, you
can use a counter to represent the number of requests
served, tasks completed, or errors.
Do not use a counter to expose a value that can
decrease. For example, do not use a counter for the
number of currently running processes; instead use a
gauge.

metric_description Description of the metric.

attributes List of Attributes (see Attribute Table) that will be streamed
as metric.

filters List of AttributeFilters (see AttributeFilter Table) that filters
the table rows which should be considered for metric
generation. Each filter in this list has to match in order to
generate the metric, so the list implies an implicit AND.

Attribute

attribute_name Name of the attribute that should be streamed as metric.

This Attribute has to be a numeric type, or a type that has a
numeric converter.

filters List of AttributeFilters (see the [AttributeFilter] table) that
filters the table rows which should be considered for metric
generation. Each filter in this list has to match in order to
generate the metric, so the list implies an implicit AND.

labels List of AttributeLabels (see the [AttributeLabel] table) that are
attached to that metric.

AttributeFilter

match_attribute_name Attribute of the Table which is used to match
against.

RBFS Time Series Database Configuration Guide

11

match_type • exact: so the attribute has to match exactly
the match value

• regular-expression: the match value is a
regular expression the attribute must match

match_value The value that attribute has to match against.

AttributeLabel

CAUTION: Remember that every unique combination of key-value label pairs
represents a new time series, which can dramatically increase the amount of data
stored. Do not use labels to store dimensions with high cardinality (many
different label values), such as user IDs, email addresses, or other unbounded
sets of values.

label_name Name of the Label (label name conventions).

dynamic bool: If the label is dynamic, the label_value is treated as
attribute_name, so the value of the attribute is used as the
label value, otherwise the label value is used directly.

label_value The value of the label or the attribute which should be used
as label value.

filters List of AttributeFilters (see [AttributeFilter] Table) that filters
the table rows which should be considered for label
generation. Each filter in this list has to match in order to
generate the label, so the list implies an implicit AND.

3.1.2. Configuring Metrics

The configuration of the Metrics can be done in various ways.

3.1.2.1. Configuring Metrics using Command Line Interface

To configure the Time Series Database, perform the following steps:

1. Define Metric configuration

2. Define Attribute configuration

3. Optional Filters at Metric Level and Attribute level

4. Defining labels to be attached to exported metric

3.1.2.1.1. Metric Configuration

Metric configuration is used to configure the parameters of the metric data being
exported.

RBFS Time Series Database Configuration Guide

12

https://prometheus.io/docs/practices/naming/

Syntax

set time-series metric <name>

set time-series metric <name> description <128 character description
about the metric-name>

set time-series metric <name> prometheus-type <counter / gauge>

set time-series metric <name> metric-type <object-metric / index-metric>

set time-series metric <name> table-name <table-name>

set time-series metric <name> attribute <attribute-name>

set time-series metric <name> metric-type <index-metric>

set time-series metric <name> index-name <index-name>

Command arguments

<metric-name> Specifies the name of the metric exported, as
would be reflected in Prometheus. Use the
naming conventions as recommended by
Prometheus

<128 character description
about the metric-name >

Description of the metric

<counter / gauge> Configures the metric data type. Currently the
supported Prometheus metric data are: counter
and gauge

<object-metric / index-metric > Specifies the type of attribute, that is scraped
and exported. There are two types, object-metric
and index-metric

<table-name> Specifies the target table, from which the data is
scraped and exported.

<attribute-name> Specifies the name of the attribute, in the target
table to be scraped and exported

<index-name> Specifies the index-name of the index-metric
attribute. This configuration is applicable for
index-metric alone.

Example

RBFS Time Series Database Configuration Guide

13

admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm table-name
global.chassis_0.resource.sensor
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm bds-type
object-metric
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm prometheus-
type gauge
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm description
"Chassis fan speed in rpm"
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm attribute
rpm

Allowed Attribute Types (Type Converters)

Normally only attributes are allowed, which are of type numeric, but for some
types, there are built-in type converters, which allow also to use attributes of their
types.

For the following BDS types, built-in type converters are provided by BDS. As per
Prometheus data model, type converter will convert the BDS type into a 64bit float
number.

BDS data type Outcome number represents

unix-wallclock-timestamp Seconds

unix-usec-wallclock-timestamp Seconds

unix-usec-monotonic-timestamp Seconds

unix-usec-coarse-wallclock-timestamp Seconds

bandwidth bps(bit per second)

temperature Degree Celsius

3.1.2.1.2. Metric Filter Configuration

Metric filter configuration is used to configure the parameters of the filter. It is
used to filter the exported metric. This is an optional configuration.

Syntax

set time-series metric <name> filter <match-attribute-name>

set time-series metric <name> filter <match-attribute-name> match-type
<exact / regular-expression>

set time-series metric <name> filter <match-attribute-name> match-
attribute-value <match-attribute-value>

RBFS Time Series Database Configuration Guide

14

https://prometheus.io/docs/concepts/data_model/

Command arguments

<match-attribute-name> Specifies the filter that filters the exported
metric, based on specified criteria. This is
optional configuration.

< exact / regular-expression > Specifies the match type to be used, There are
two options, exact and regular-expression.

<match-attribute-value> Specifies the attribute value used for match.

Fixed value for exact.

Regex pattern for regular-expression

Example

Exact Value

admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm filter
resource_type match-attribute-value fan
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm filter
resource_type match-type exact

Regular Expression

admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm filter
resource_name match-attribute-value Chassis.*
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm filter
resource_name match-type regular-expression

3.1.2.1.3. Metric Attribute Label Configuration

Metric attribute config is used to configure the labels to be attached to the
exported metric.

Syntax

set time-series metric <name> attribute <attribute-name> label <label-
name>

set time-series metric <name> attribute <attribute-name> label <label-
name> label-type <dynamic / static>

set time-series metric <name> attribute <attribute-name> label <label-
name> label-value <label-value>

RBFS Time Series Database Configuration Guide

15

Command arguments

<label-name> Specifies the name of label. User
definable, Please use naming
conventions as recommended by
Prometheus

<dynamic / static> Specifies the type of labels, a static value
or dynamic value to be added.

<label-value> Specifies the label-value to be used.

Example

Dynamic Label

admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm attribute
rpm label fan
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm attribute
rpm label fan label-value resource_name
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm attribute
rpm label fan label-type dynamic

Static Label

admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm attribute
rpm label vender
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm attribute
rpm label fan label-value rtbrick
admin@rtbrick: cfg> set time-series metric chassis_fan_speed_rpm attribute
rpm label fan label-type static

3.1.2.1.4. Metric Attribute Filter Configuration

Attribute filter config is used to configure the parameters of Attribute filter. It is
used to filter the exported metric based on certain fields of the attribute. This is an
optional configuration.

Syntax

RBFS Time Series Database Configuration Guide

16

set time-series metric <name> attribute <attribute-name> filter <match-
attribute-name>

set time-series metric <name> attribute <attribute-name> filter <match-
attribute-name> match-type <exact/regular-expression>

set time-series metric <name> attribute <attribute-name> filter <match-
attribute-name> match-value <match-attribute-value>

Command arguments

<attribute name> Specifies the filter that filters the exported
metric , based on criteria of the attribute. This is
optional config.

<exact / regular-expression> Specifies the match type to be used, There are
two options, exact and regular-expression.

<match-attribute-value> Specifies the attribute value used for match.
Fixed value for exact. Regex pattern for regular-
expression

Example

The below example shows, the metric attribute will be exported only if the
port_stat_if_in_discards is exactly 0.

admin@rtbrick: cfg> set time-series metric interface_statistics_data
attribute port_stat_if_in_ucast_pkts filter port_stat_if_in_discards
admin@rtbrick: cfg> set time-series metric interface_statistics_data
attribute port_stat_if_in_ucast_pkts filter port_stat_if_in_discards match-
type exact
admin@rtbrick: cfg> set time-series metric interface_statistics_data
attribute port_stat_if_in_ucast_pkts filter port_stat_if_in_discards match-
attribute-value 0

3.1.2.1.5. Metric Label Filter Configuration

Label filter configuration is used to set filter parameters that can be used to attach
label based on certain criteria. This is an optional configuration.

Syntax

RBFS Time Series Database Configuration Guide

17

set time-series metric <name> attribute <attribute-name> label <label-
key> filter <match-attribute-name>

set time-series metric <name> attribute <attribute-name> label <label-
key> filter <match-attribute-name> match-type <regular-expression/exact>

set time-series metric <name> attribute <attribute-name> label <label-
key> filter <match-attribute-name> match-attribute-value <match-
attribute-value>

Command arguments

<match-attribute-name> Specifies the filter that filters the exported
metric, based on some attribute value.This is
optional config.

< exact / regular-expression > Specifies the match type to be used, There are
two options, exact and regular-expression.

<match-attribute-value> Specifies the attribute value used for match.
Fixed value for exact. Regex pattern for regular-
expression

Example

The below example sets label, interface_orientation to the exported data, only if
the interface_name matches ifp-0/0/50.

admin@rtbrick: cfg> set time-series metric interface_statistics_data
attribute port_stat_if_in_ucast_pkts label interface_orientation
admin@rtbrick: cfg> set time-series metric interface_statistics_data
attribute port_stat_if_in_ucast_pkts label interface_orientation filter
interface_name
admin@rtbrick: cfg> set time-series metric interface_statistics_data
attribute port_stat_if_in_ucast_pkts label interface_orientation filter
interface_name match-type exact
admin@rtbrick: cfg> set time-series metric interface_statistics_data
attribute port_stat_if_in_ucast_pkts label interface_orientation filter
interface_name match-attribute-value ifp-0/0/50

3.2. Alert

RBFS uses the prometheus alerting feature to generate alerts. These alerts are
forwarded to an alertmanager instance inside the rbfs container. The
alertmanager instance sends the alert to CTRLD which distributes the alert to an
HTTP Endpoint.

RBFS Time Series Database Configuration Guide

18

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Alerts are also configured in a BDS table, and they are exported to Prometheus by
the system.

3.2.1. Alert Data Model

Alert

name The name of the alert rule.
That is the unique identifier for the rule.

group Name of the alert group the alert belongs to.
The alert group helps to structure the alerts.

interval How often the rule should be evaluated.

Pattern:"[0-9]+(ms |[smhdwy]"

Example:"5s"

In Prometheus the the interval can specified per alert group.
So the alert alert group for Prometheus is calculated via
{alert_group}_{interval}.

expr Alert evaluation expression in promql

labels Key, Value pairs of labels that should be applied. The labels
clause allows specifying a set of additional labels to be
attached to the alert. Any existing conflicting labels will be
overwritten. The label values can be templated (see
templating).

annotations Key, Value pairs of annotations that should be applied. The
annotations clause specifies a set of informational labels that
can be used to store longer additional information such as
alert descriptions or runbook links. The annotation values
can be templated (see templating)

for Alerts are considered firing once they have been returned for
this long. Alerts which have not yet fired for long enough are
considered pending.

Pattern:"[0-9]+(ms |[smhdwy]"

Example:"30s"

level This is an explicit annotation label with the label name level.
This is used to specify the severity:
1.Alert
The annotation value can be templated (see templating)

RBFS Time Series Database Configuration Guide

19

summary This is an explicit annotation label with the label name
summary. The annotation values can be templated (see
templating).

description This is an explicit annotation label with the label name
description. The annotation values can be templated (see
templating).

3.2.2. Configuration

The configuration of the Metrics can be done in various ways.

3.2.2.1. Configuring Alert Using CLI

Syntax

set time-series alert <name>

set time-series alert <name> group <group>

set time-series alert <name> for <for>

set time-series alert <name> interval <interval>

set time-series alert <name> expr <expr>

set time-series alert <name> level <level>

set time-series alert <name> summary <summary>

set time-series alert <name> description <description>

set time-series alert <name> labels <label>

set time-series alert <name> annotations <annotations>

Command arguments

<name> The name of the alert rule. That is the unique identifier
for the rule.

<group> Name of the alert group the alert belongs to. The alert group
helps to structure the alerts.

RBFS Time Series Database Configuration Guide

20

<name> The name of the alert rule. That is the unique identifier
for the rule.

<interval> How often the rule should be evaluated.

Pattern:"[0-9]+(ms |[smhdwy]"

Example:"5s"

In Prometheus the the interval can specified per alert group.
So the alert alert group for Prometheus is calculated via
{alert_group}_{interval}.

<expr> Alert evaluation expression in promql

<label> Key, Value pairs of labels that should be applied. The labels
clause allows specifying a set of additional labels to be
attached to the alert. Any existing conflicting labels will be
overwritten. The label values can be templated (see
templating).

<annotations> Key, Value pairs of annotations that should be applied. The
annotations clause specifies a set of informational labels that
can be used to store longer additional information such as
alert descriptions or runbook links. The annotation values
can be templated (see templating)

<for> Alerts are considered firing once they have been returned
for this long. Alerts which have not yet fired for long enough
are considered pending.

Pattern:"[0-9]+(ms |[smhdwy]"

Example:"30s"

<level> This is an explicit annotation label with the label name level.
This is used to specify the severity:

1.Alert

The annotation value can be templated (see templating)

<summary> This is an explicit annotation label with the label name
summary. The annotation values can be templated (see
templating).

<description> This is an explicit annotation label with the label name
description. The annotation values can be templated (see
templating).

RBFS Time Series Database Configuration Guide

21

Example

admin@rtbrick: cfg> set time-series alert sample_alert
admin@rtbrick: cfg> set time-series alert sample_alert group hardware_metrics
admin@rtbrick: cfg> set time-series alert sample_alert for 30s
admin@rtbrick: cfg> set time-series alert sample_alert interval 5s
admin@rtbrick: cfg> set time-series alert sample_alert expr
avg_over_time(cpu_temperature_celcius[1m])>100
admin@rtbrick: cfg> set time-series alert sample_alert level 2
admin@rtbrick: cfg> set time-series alert sample_alert summary "Element {{
$labels.element_name }} CPU {{$labels.cpu}} HIGH temperature"
admin@rtbrick: cfg> set time-series alert sample_alert description "Cpu {{
$labels.cpu }} of element {{ $labels.element_name }} has a temperature o
ver 100 for more than 30 seconds"
admin@rtbrick: cfg> set time-series alert sample_alert labels device:leaf1
admin@rtbrick: cfg> set time-series alert sample_alert annotations "sample-
annotation-key:sample-value"

3.2.3. Graylog Alert Distribution

The alertmanager on RBFS is configured to send alerts to CTRLD.

CTRLD therefore has an endpoint where the alerts are sent to. CTRLD distributes
that to a GRAYLOG instance.

The configuration is done in the CTRLD configuration:

 "graylog_enable": true,
 "graylog_url": "http://all_message:12201/gelf",
 "graylog_heart_beat_interval": 120,
 "graylog_endpoints": [
 {
 "name": "prometheus",
 "url": "http://if_defined_prometheus_message:12201/gelf"
 }
],

RBFS Time Series Database Configuration Guide

22

	RBFS Time Series Database Configuration Guide
	Table of Contents
	1. Introduction
	1.1. Architectural Overview
	1.1.1. Router deployment model
	1.1.2. Storage efficiency
	1.1.3. Alerting
	1.1.4. Role of CTRLD
	1.1.4.1. Service state and Proxy
	1.1.4.2. Alert distribution
	1.1.4.3. API for Configuration

	1.1.5. Federation deployment model

	2. Installation
	3. Configuring Time Series Database
	3.1. Metric
	3.1.1. Metric Data Model
	3.1.2. Configuring Metrics
	3.1.2.1. Configuring Metrics using Command Line Interface
	3.1.2.1.1. Metric Configuration
	3.1.2.1.2. Metric Filter Configuration
	3.1.2.1.3. Metric Attribute Label Configuration
	3.1.2.1.4. Metric Attribute Filter Configuration
	3.1.2.1.5. Metric Label Filter Configuration

	3.2. Alert
	3.2.1. Alert Data Model
	3.2.2. Configuration
	3.2.2.1. Configuring Alert Using CLI

	3.2.3. Graylog Alert Distribution

