;; rtbrick

Securing the Management
Plane

Version 21.6.1, 25 June 2021

Securing the Management Plane

Registered Address Support Sales

26, Kingston Terrace, Princeton,
New Jersey 08540, United States

+91 80 4850 5445

http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2021 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick's Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

Securing the Management Plane

Table of Contents

1. Overview
2. RtBrick Token
2.1.JSON Web Tokens
2.1.1. Structure
2.1.1.1. Header
2.1.1.2. Payload
2.1.1.3. Signature
2.1.2. Putting all together
2.1.2.1. AccessToken
2.1.3. JWKS Validation
2.2. OIDC Authentication
3. Role Based Access Control (RBAC)
3.1. CTRLD Authorization Configuration
3.1.1. Activate or Deactivate Authorization in CTRLD
3.2. RBFS Authorization configuration
3.2.1. RBFS Role Configuration via REST
3.2.2. RBFS Authorization CLI Configurations
4. SSH with TACACS+
4.1. RTB-PAM Token
4.2. SSH User Prompt
4.3. User Login Flow
4.3.1.RTB
4.4. In-Band and Out-of-Band TACACS user SSH Login
4.4.1. In-band TACACS user SSH Login
4.4.2. Out-of-band TACACS user SSH Login
4.5. Configuring TACACS+ for RBFS
4.5.1. Example: TACACS User Configuration in the TACACS Server
4.5.2. Troubleshooting NSS User Lookup Issues
4.5.3. SSH User Login Logs
4.6. Role-based Access Configuration

N N oo oo o W

NN NN = & @y ey ey e ey ey ey ey e ey
_ = =22 O 0V LV VW OVWoONNOOO P~WWNDNDNDO ®

Securing the Management Plane

1. Overview

The Securing Management Plane feature provides the capability to restrict the
access to the management plane only to authenticated and authorized subjects.

The authentication identifies a subject, and the authorization validates if the
subject is allowed to execute the action.

B rtbrick-switch
JWKS Storage
System
OIDC Server
(KeyCloak)
Load JWK Set
Authenticated Access by Token

Figure 1. External Dataflow

The figure-1 shows the data flow when accessing an rtbrick-switch. Each call
against the switch in more detail against the APl Gateway Daemon (APIGWD) of the
switch has to be authenticated with an access token. There is only one exception
when accessing the CTLRD's Ul; it is possible to be redirected to an OpenIDConnect
Authenticator.

The APIGWD validates the access token against an JSON Web Key Set (JWKS)
(https://tools.ietf.org/html/rfc7517). This key set can be loaded from a file locally
on the system or auto discovered via the OpenlDConnect server.

A valid access token, in the sense of syntactically correct but also successfully
validated signature by one of the JSON Web Key of the JWKS files, leads in an
authenticated user. If the validation is unsuccessful, the call will be rejected.

The access token contains scopes which are used internally for the authorization
checks. The authorization is a role based authorization where the scopes equal to
the roles.

Internally the access token is converted to an RtBrick token, and all the
communications inside the switch is authenticated via this RtBrick token.

https://tools.ietf.org/html/rfc7517

Securing the Management Plane

The dataflow inside of the switch can be seen in Figure 2.

The scopes of the access token are copied to the RtBrick Token.

Ve ONL Y
—%';'ﬂzf—) APIGW |» CTRLD | — APIGW |——inband
r_k BD -« SL);E «—Inband
HOST <___4_’,,)
SSH

Authenticated by RtBrick Token

Figure 2. Internal Dataflow

Securing the Management Plane

2. RtBrick Token

2.1.]SON Web Tokens

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and
self-contained way for securely transmitting information between parties as a
JSON object. This information can be verified and trusted because it is digitally
signed. JWTs can be signed using a secret (with the HMAC algorithm) or a
public/private key pair using RSA or ECDSA.

For more information about JSON Web Token, see https://jwt.io/introduction/.

2.1.1. Structure

In its compact form, JSON Web Tokens consist of three parts separated by dots (.),
which are:

* Header
+ Payload

+ Signature

Therefore, a JWT typically looks like the following.

XXXXX. YYYYY. 2222Z

2.1.1.1. Header

The header typically consists of two parts:

* The type of the token, which is JWT

* The signing algorithm that is being used, such as HMAC SHA256 or RSA
The suite of specifications on JWT provisions a few different options to identify
particular cryptographic keys. The most straightforward mechanism is the "kid"

claim. This claim can be added to the header of the token. It is intended to contain
a string-based key identifier.

For example:

"al g": "HS256",
"typ": "JwWr,
"kid": "0815"

https://jwt.io/introduction/

Securing the Management Plane

Then, this JSON is Base64Url encoded to form the first part of the JWT.

2.1.1.2. Payload

The second part of the token is the payload, which contains the claims. Claims are
statements about an entity (typically, the user) and additional data.

There are three types of claims:

* registered
* public

* private

Registered claims

These are a set of predefined claims which are not mandatory but
recommended, to provide a set of useful, interoperable claims. Some of
them are: iss (issuer), exp (expiration time), sub (subject), aud (audience),
and others.

Public claims

These can be defined at will by those using JWTs. But to avoid collisions they
should be defined in the IANA JSON Web Token Registry or be defined as a
URI that contains a collision resistant namespace.

Private claims

These are the custom claims created to share information between parties
that agree on using them and are neither registered or public claims.

An example payload is as follows:

"sub": "1234567890",
"nane": "John Doe",
"iat": 1516239022,
"exp": 1600000000,
"scope": "user"

The payload is then Base64Url encoded to form the second part of the JSON Web
Token.

2.1.1.3. Signature

To create the signature part you have to take the encoded header, the encoded
payload, a secret, the algorithm specified in the header, and sign that.

Securing the Management Plane

For example if you want to use the HMAC SHA256 algorithm, the signature will be
created in the following way:

HMACSHA256 (
base64Ur | Encode(header) + "." +
base64Ur | Encode(payl oad),
secret)

The signature is used to verify the message wasn't changed along the way, and, in
the case of tokens signed with a private key, it can also verify that the sender of the
JWT is who it says it is.

2.1.2. Putting all together

The output is three Base64-URL strings separated by dots that can be easily
passed in HTML and HTTP environments.

2.1.2.1. AccessToken

The Access Token is a JSON Web Token. The token is typically sent in the
Authorization header using the Bearer schema. The content of the header should
look like the following:

Aut hori zati on: Bearer <token>

The APl Gateway also supports sending the token as Cookie, but this is not
described here, that is only used for the CTRLD web UI.

The token has to have the kid claim in the header. This kid is used to find the right
JSON Web Key (JWK) from one of the JSON Web Key Sets (JWKS).

APIGWD searches for the jwks file under
/etc/rtbrick/apigwd/access_secret_jwks.json, but it is also possible to provide an

additional oicd endpoint. By that the keysets are searched in the provided order:

* local file specified by command line -access-token-jwks-file-name

* oicd auto discovery -oidc-issuer

The scope claim contains the roles the user has. For example:

Securing the Management Plane

{
"sub": "1234567890",
"nanme": "John Doe",
"adm n": true,
"iat": 1516239022,
"exp": 1600000000,
"scope": "user operator"
}

This user has the roles user and operator.

2.1.3. JWKS Validation

The example below shows how to create a public/private key set file (for example
with https://mkjwk.org/)

Key Use Algorithm Key ID

Generate

Example PubPrivjwks.json:

https://mkjwk.org/

Securing the Management Plane

{
"keys": |
{

p - -

3VWNgU2aVKy 8Q7nmbl Rpw_aOknWA7YvZKVNQzl Wi j XWBELhQBc6sf | qo92pg5nmNKI_ Xkl 71xHyp-
WBf w xJqZ9pUu&Aj nUi Kgz YHvkccDF5XI M pA67VnBoznmy Lck QOKEXesRD2hacr j b-

T89dc| ZQHBUKLRYXGRXHCM hPeBok",

"kty": "RSA",

"gq": "07STzbuUh6p_i N2wzTegl QdnXBLNnzPCObCKt - KLSj kLt r ZM/2YxM2yhMVs -
56SsLR7ElI CFRAB2vdCz| ovXKShubUINSKgVI 38gpGVv9ohi i 8r gNSN3SdEMAGscp_TR36ex 1NoSC6kHB
F2hsyPf gD7U- t xguZr 6WOMNG6r KAbACcgOTWGWD"

“d": "I WC4aKuPVI VGZeBhb3m alnsOCcJulxj pkZAu-

QQO7phWeGLEf | n3t 0j Kt | K6ellFEz1370w75Je0_oMAzZE-

eTAMyseUTHZhn4Lhm dOwmsp90Zr MoNnLFpaF_r GYb0630xg27CGdR4gC | ZvMuy1uCPlsr 81 yl 1uj
N7n_6ETMYbdXPLQt EAB4Dag6XFTj y1l 8aVWBxpscnBgKg64f gBGRvGY6PI Uf qY3gaqg_vX9SOOHVPN
5WoShKA4f guxukRBi LLYNxDVDb3- h8pd1_fr 2WayDzntl XpxvVj RVZHt 71C-

OUhap6eRDMQcZXi h8l dNV8zHUF _Leci E36f | b30Q",

"e": "AQAB",

"use": "sig",

"kid": "access",

"gi": "3H s_DaBkf _r7uDx9-

8BChOQPhcudT95XCOW S5M Y1 Bt gqQ 61 scHI qvt XFpj mPRey-
chO7p9ns OAB_T8j _ngll 6UMDX6j 4h_f yHEbOWRgf NemKng2HsOuCr wpj gG&f 2eXzaBY8TOH bFl TJIA
AARGh_PePBi - F- | f AxGayj 4hi M',

"dp": "NJuYYpZAt 1KUJJsdSKI 6gCYPV3xr Yj 3i uTKYBCbYAH5j | P-
CFU S5mBVdnnmuYKGTi vsgi 55Dy s| uapwrsZ2KnoMBXXNb6dwi xj vr 8hSvuex 1M\-
OmLud TUgHM DVWBdhGFxwJuqg57VesFANVPI 2Zf QBBMAGPY Ra- r 7mnZzo0J e f k",

"al g": "RS256",

"dg": " XL-
41 W U6Hr h90Oxr EP1Vwi KkPcpgk3gGa_31_49kOXxi yHAzK6S3VECH bHpEef YYFFq6B9) MLMzKYSJS
2U1FUB5y ZWh- GFcW.3_nRnmeCgnBMMLI | kI s3KeCr h58JoPoBr d4BN- r Ogq_kDagQc-
ughla74PeKxLi mucmANExsH E",

"n": "z_NDnlLu8MBKGvxvf Jt 8CAhdLdsqgkskf Y7vf 9X9pWLLE r 31 HU85-
| 6NNHe UWYbSNe 6l t 9YODNL 8-
vTT60Cgr e96byvpdYZ7Ki 5KGe4f U96x0_ZF5LceUQc4l 5dx6apt Ni 9mi\gcZ9nkc2Xh83ASg9ot &Y
0YsAnl 1cQ0Tj zV9cM 7u7VON6 SONIWLWFYO01- - i xMyxRAZUEJj bg4QAdL7DndRQXvnglnvI v-
nnPPQIa7ZTg7NZDEn5l MradU TVI 5uvSNsACt C49R5k EKNCc 1Hc-
3goot U5V VPBx61 FHt NC2Bi Gas QAUpsDXZI 7Yt vBZwz YZwznUl | uPi KLDKk- 4Tt Q'

}
]

}

The APIGWD only needs to know the Public part:

Securing the Management Plane

{

"keys": |

{
"kty": "RSA",
"e": "AQAB",
"use": "sig",
"kid": "access",
"al g": "RS256",

n": "z_NDmLu8M3KGvxvf Jt BCAhdLdsqgkskf Y7vf 9X9pWLLE r 31_HU85-

| 6NNHe UAWbSNe6l1 t 9YCODNL 8-
vTT60Cgr e96byvpdYZ7Ki 5KGe4f U96x0_ZF5LceUQc4l 5dx6apt Ni 9mAgcZ9nkc2Xh83ASg9ot RY
0YsAnl 1cQ0Tj zVI9cM 7u7VONG6 SONIWLWFYO1- - i x MgxRAZUEJ] bg4 QAdL7DndRQXvglnvI v-
nnPPQa7ZTg7NZDEn5I MradU TVI 5uvSNsACt C49R5k EKNCc 1Hc-
3goot U5VyVPBx 61 FHt NC2Bi Gas QAUpsDXZI 7Yt vBZwz YZwznUl | uPi KLDk- 4Tt Q'

}

]

}

Now to create a token you can use https://keytool.online/, and paste the
PubPrivjwks.json into the RSA Key Field and provide as Payload.

For example:

{
"sub": "1234567890",
"scope": "user operator",
"nanme": "John Doe",
"adm n": true,
"exp": 1600000000,
"fat": 1516239022

}

This results in the following token:

eyJraWd O JhY2N c¢3M LCI0eXAi O JKV1Q LCIhbCGeci G JSUzI 1N J9. eyJzdW i O | xM MONTY3
ODkw i wi c2NvcGUi O J1c2Vyl GWZXIhd@yl i wi bt ZSI 61 kpvaGAgR&3I! i wi YWRt aWli OnRyd
WUs| mv4cCl 6 MTYWIVDAWVDAWMOW aWFOI j oxNTE2M MbMDI yf Q. mPOmMXR96-

99YIl zh6_2saUQckKDwmpC7j DFpo2nmDg9YAj 4Dk Sf 4x Dox BqMVRwEknt LCENVOsxy UNz C-

nv5yBr et JAbbX hCVS5Jk392pi CVM 9ucbwnCKs6xaJDImvH 1gxyf 71 Cgd9nl | awned_nnMI4N9
RdVel uyv1si uNUO09RASE4cX2Jl zl rj goZmt cU-

ng_| 7S2QTkdr 02e1wPZKkt TMA0GBV] Gb7i el BXyLKNQ 9PW5Z2sHkd85Mk XMRUWUcr EagWsJr V3u
i xeT3QrZ3g9Y6(h4XDPH3EXUoAHIOV26r pgXDsB_nm\vl 5CW CUcaZLPYoSEzBUPa9NaFI| Bcg

The apigwd can decode that token and validates the token with the corresponding
key in the specified JKWS file.

2.2. OIDC Authentication

If you use OpenlID Connect for Authentication, that the Token is generated by the

10

https://keytool.online/

Securing the Management Plane

OIDC Connect server.

It is important to understand how the validation of the tokens works. Either the
JWKS file which corresponds to the OIDC server is located locally on the system, or
the OpenID Connect Server (issuer) is specified.

The first configuration possibility we already discussed. If the oicd connect server
is specified the server provides an endpoint where the clients can download the
public keys.

As an example for this configuration of an oidc-issuer here an excerpt of:

/etc/rtbrick/apigwd/config.json

"oidc_issuer" : "http://<keycl oak>/auth/real ns/ <real nanme>",
"client_id" : "<client id>",
"client_secret" : "<secret>",

“redirect _url": ""

Specific information about the issuer can be found at http://<keycloak>/auth/
realms/<realm name>/.well-known/openid-configuration.

If you also specify the client secret and the client id, this allows the APIGWD to
redirect to the login page of the OIDC server. This is needed for browser-based
applications like CTRLD UI.

11

http://<keycloak>/auth/realms/<realm
http://<keycloak>/auth/realms/<realm

Securing the Management Plane

3. Role Based Access Control (RBAC)

Role Based Access Control (RBAC) is an approach to restrict the system access to
authorized users. The authorization model is role-based. There will be three items
in a role-based modeel: sub, obj, and act.

« sub: the user (role) that wants to access a resource.
* obj: the resource that is going to be accessed
« act: the operation that the user performs on the resource

The RBAC Data Model is implemented in RBFS, and it allows you to define
Permission or User Roles to various type of resources.

The model contains:

* Resource Type: The type of resource we are talking about (for example, BDS
Table, BDS Object, REST)

« Resource: The identifier of the Resource (for example, Table Name, Rest
endpoints). Regular expressions are allowed.

* Permissions: Indicates the action that a user is allowed to perform on the
resource. The Permissions are CRUD (Create, Read Update, Delete). The
permission gets a semantic with respect to the resource type.

+ Role: The role of a user who tries to access a resource.

3.1. CTRLD Authorization Configuration

3.1.1. Activate or Deactivate Authorization in CTRLD
"auth_disabled": true
It is possible to specify the permissions in CTRLD exactly in the way specified

above.

Where sub is the role a user needs to have, obj species the url endpoint the user
wants to reach, and act is the HTTP Method the user wants to call on the endpoint.

For example:

12

Securing the Management Plane

{
“perm ssions": |
{"SUb"Z usupervi SOF", uobj u: u/*u' " aCt u: " . * 1 }'
{"Sub": "I’eader", uobj u: u/*u’ " aCt u: " ET"},
{usubu: ||-*||’ "Obj ||:

“[api/vl/rbfs/el enments/{el enent_nane}/services/{service_nane}/proxy/*",
"act": ".*"}

]

}

This means: * The user with the role supervisor is allowed to access all rest
endpoints, and act on them with all HTTP methods. * The user with the role reader
is allowed to access all rest endpoints, but can only call the HTTP GET method. * All
authenticated users are allowed to access the proxy endpoint with all HTTP
methods.

To configure that policy CTRLD offers 2 endpoints:

« PUT /api/v1/ctrld/authorization/permissions

« GET /api/v1/ctrld/authorization/permissions

Please refer to APl Documentation for more information.

3.2. RBFS Authorization configuration

3.2.1. RBFS Role Configuration via REST

{
"objects": [
{ "attribute": { "role": "operator", "perm ssion": "create|read|delete",
"resource_regex": "global.*", "resource_type": "object" } },
{ "attribute": { "role": "operator", "perm ssion": "create|read|delete",
"resource_regex": "global.*", "resource_type": "table" } }
1,
“table": { "table_nane": "secure.global.authorization.config", "table_ type":
"aut hori zati on_config_table" }
}
{
"objects": [
{ "attribute": { "role": "user", "permssion": "-|read|-",
"resource_regex": "global.*", "resource_type": "table" } },
{ "attribute": { "role": "user", "perm ssion": "-|read|-"
"resource_regex": "global.*", "resource_type": "object" } }
Il
"table": { "table_nanme": "secure.global.authorization.config", "table type":
"aut hori zati on_config_table" }
}

13

Securing the Management Plane

* role : Represents role in the system
* resource_type : Represents resources in the RBFS (table | object).
* resource_regex : Regex for the resources to be accessed.

* permission : Bitmap representing permissions to create, read and delete.
create |read|delete

Action BDS Table BDS Object
Create Create a BDS Table Create/Update a BDS Object
Read Read Table Header Objects or Read BDS Objects
Metadata
Delete Delete a BDS Object Delete a BDS Object

3.2.2. RBFS Authorization CLI Configurations

Global user role configuration:

set system authorization global <role> <resource-type> <resource-regex>
permission <permission-map>

role Represents role in the system
resource_type Represents resources in the RBFS (table/object).
resource_regex Regex for the resources to be accessed.
permission Bitmap representing permissions to create, read and
delete.
-/-/-
-/-/delete
-/read/-

-/read/delete
create/-/-
create/-/delete
create/read/-

create/read/delete

Example

14

Securing the Management Plane

adm n@t bi ck: cfg> set system authorization gl obal admin table global.*
perm ssion create/read/del ete

Lawful user role configuration

set system authorization lawful <role> <resource-type> <resource-regex>
permission <permission>

role Represents lawful interceptor (LI) role in the system
resource_type Represents resources in the RBFS (table/object).
resource_regex Regex for the resources to be accessed.
permission Bitmap representing permissions to create, read and
delete.
-/-/-
-/-/delete
-/read/-

-/read/delete
create/-/-
create/-/delete
create/read/-

create/read/delete

Example

adm n@t bi ck: cfg> set system authorization |awful fbi table local.*
perm ssion -/read/-

15

Securing the Management Plane

4. SSH with TACACS+

RBFS provides a custom pluggable authentication module that gets invoked by the
stock sshd on login. The necessary configurations are pre-installed on RBFS.

RtBrick-PAM, referred to as RTB-PAM helps in landing the TACACS authentication
on the appropriate user in the Ubuntu container and helps in providing necessary
details for the secure management plane feature.

Once the PAM client requests TACACS for the authentication, with successful
authentication TACACS responds with a few RtBrick specific details.

RBFS role
rtb-role : operator”
rtb-deny-cnds: “clear bgp peer”
rtb-all ow cnds: “show optics”
priv_Ivl : some_leve

On successful authentication, the RTB-PAM module creates a token (JWT) for the
logged-in ssh user.

4.1. RTB-PAM Token

Token created by the RTB-PAM module contains the same claims that are defined
under the RtBrick Token section, and this token is signed with the secret_jwks.json
key. The rtb-role is converted to the scope role of the RtBrick Token, the
deny/allow commands are converted into the claims rtb-deny-cmds and rtb-allow-
cmds. Once the token is created, it is transferred to the environment variable.

setenv RTB_TOKEN = {
"sub": "83692",
"iat": 1516239022,
"exp": 1517239022,
"nanme": "Adm n User",
"preferred_usernane", "userl",
"scope": "operator tacacs_priv_|lvl_8"
“rtb-deny-cnds": "~clear bgp peer"
“rtb-all owcnds": "show optics"

After the RTB-PAM token is created, the CLI prompt appears. If a token is not
created for the logged-in user, then the user cannot perform communication with
the BD.

16

Securing the Management Plane

4.2. SSH User Prompt

After you successfully log into RBFS via SSH, you can see the rtb-token using the
shell environment. For example, an SSH prompt may look like the example below.

rtbng@908f 71f 63b7: ~$ env

SSH_CONNECTI ON=172.18. 0.1 33136 172.18.0.3 22

LESSCLOSE=/ usr/ bi n/ | esspi pe % %

LANG=C. UTF- 8

USER=rt bng

PWD=/ hone/t acacs12

HOVE=/ hone/ t acacs12

SSH CLI ENT=172. 18. 0.1 33136 22

SUDO_USER=rt bng

PRIV _LVL=1

SSH TTY=/dev/pts/1

SUDO_PROWPT=[sudo] password for rtbng:

MAI L=/ var/ mai |l /rtbng

TERME=xt er m 256¢o0l or

SHELL=/ bi n/ bash

SHLVL=1

LOGNAME=rt bng

PATH=/ usr /| ocal / sbi n:/usr/ 1 ocal / bi n:/usr/sbin:/usr/bin:/sbin:/bin:/usr/ganes:
/usr/ | ocal / ganes

LESSOPEN=| /usr/bin/lesspipe %

_=/usr/bin/env

RTB_TOKEN=eyJhbCGci O JI Uzl 1Ni | sl nt pZCl 61 nJ0YnJpY2si LCJ0eXAi O JKV1Q f Q eyJl eHA
G EONTE2MDczMDAs| m hdCl 6MIQLMTYWN] QMvVOwi aXNzl j oi cnRi cml j aylhcGkt Z3ci LCIJuYWLI |
j oi Qrhpc2ht YSBBY2hhcnl hli wi cHIl Zmvycnivk X3VzZXJuYWLI | j oi Ymhpc2ht YSI sl nNj b3BI |
oi c3l zdGvt 1iwi c3Vi |l joi OTl | OG OYTEt M2E2Yi 00YzI 5LWII Zd t N2U3N2Nj OTFj ZTZi | n0. NOO
Acaf nHf gx- QFwi C- _VGokbvUwr TG hf pD9px3hMY

4.3. User Login Flow

The figure below shows the user login flow.

17

Securing the Management Plane

TACACS Server

RBFS/ONL

reader —

&

Common flow

Local system user

Tacacs user
Failed usar login

Linux pre-configured users and groups

User Name Group Name Privilege
supervisor supervisor level 15
operator operator level 7-14
reader reader level 0-6
4.3.1. RTB

rtb is the REST based CLI utility in the RBFS. Currently the rtb utility is enhance to
read the token from the RTB_TOKEN environment variable, and use this token in
its authorization header of the REST query to the BD.

The RTB_CLI_DENY_CMDS and RTB_CLI_ALLOW_CMDS regular expression strings
are passed to the back-end with every rtb command, and the back-end evaluates
them against the commands that are to be executed and against the completion.

Currently the validation for the allow and deny commands is
o available only for "rtb <bd> <cmd>" command, and not for the
commands executed in the application telnet.

18

Securing the Management Plane

4.4. In-Band and Out-of-Band TACACS user SSH
Login

4.4.1. In-band TACACS user SSH Login
A TACACS user can login using SSH to rbrick container through inband

management. RBFS should be configured with inband-management TACACS
server for TACACS user login.

4.4.2. Out-of-band TACACS user SSH Login

TACACS user can login via SSH to ONL though out-of-band management. RBFS
should be configured with out-of-band management TACACS server for TACACS
user login.

4.5. Configuring TACACS+ for RBFS

To configure TACACS+ server for RBFS, enter the the following commands.

Syntax

set system authorization tacacs server-ip <IP address> type <management
type> secret-plain-text <secret key>

set system authorization tacacs server-ip <IP address> type <management
type> server-port <server port number>

Command Arguments

<IP Address> IP address of the TACACS Server
<management in-band or out-of-band management
type>

secret-plain-text> Secret plain text string. The secret string input can be
plaintext format. If string starts with 1 then system considers
it as encrypted string and stores key as it is. Also if secret
string starts with O, then system considers it as secret in
plaintext and hence it stores in the system in encrypted

format.
<server port Server port number. This attribute is optional and by default
number> system tries to connect to server running on port number 49,

Example

19

Securing the Management Plane

root@tbrick: cfg> set system authorization tacacs 111.1.1.1 out-of -band
secret-plain-text testkey

root@tbrick: cfg> set system authorization tacacs server-ip 10.0.0.1 type
i nband server-port 1234

0 A TACACS user is not allowed to login without TACACS server
configuration.

The example below shows the running configuration after you configure TACACS.

{
“rtbrick-config:systent: {
"aut hori zation": {
"tacacs": [
{
"ipv4-address”: "111.1.1.1",
"type": "out-of-band",
"secret-encrypted-text": "$202a74ca845585855b6f 8df 57cdbf 7858"
}
]
}
}
}

4.5.1. Example: TACACS User Configuration in the TACACS
Server

The example below shows the server configurations for rtb-allow-cmds and rtb-
deny-cmds.

accounting file = /var/log/tac_pl us. acct
key = tacacskey

user = user {
login = cleartext "user"
nenber = Network_User
}
group = Network_Operator {
default service = permt
service = exec {
priv-lvl = 10
rtb-deny-cnds = *<cnd-regex>
rtb-all owcnmds = *<cnd-regex>

o ‘ priv-lvl is @ mandatory attribute in the TACACS user configuration.

20

Securing the Management Plane

Multiple cmd-regexes can be configured with each regexes separated by
semicolon ().

Example:
rtb-deny-cnds = <cnd-regex- 1>; cnd<r egex- 2>

4.5.2. Troubleshooting NSS User Lookup Issues

To look up the TACACS username with all NSS methods, enter the following
command:

ubuntu@tbrick: ~$ sudo getent passwd <tac_user>

To look up the local user within the local user database, enter the following
command:

ubuntu@tbrick: ~$ sudo getent -s conpat passwd <l ocal _user>

To look up the TACACS user within the TACACS+ server database, enter the
following command:

ubunt u@at man: ~/ devel opnent $ sudo getent -s tacplus passwd <tacuser>

If TACACS does not appear to be working correctly, You can enable debug logging
by adding the debug=1 parameter to one or more of these files:

/etc/tacplus_servers
/etc/tacplus_nss. con

4.5.3. SSH User Login Logs

The transaction logs of users (in the PAM module) are available in the following log
file.

/var/log/auth.log

4.6. Role-based Access Configuration

To configure a global user role, enter the following command:

21

Securing the Management Plane

Syntax

set system authorization global <role> <resource-type> <resource-regex>
permission <permission-map>

To configure a Lawful user role, enter the following command:

Syntax

set system authorization lawful <role> <resource-type> <resource-regex>
permission <permission-map>

22

	Securing the Management Plane
	Table of Contents
	1. Overview
	2. RtBrick Token
	2.1. JSON Web Tokens
	2.1.1. Structure
	2.1.1.1. Header
	2.1.1.2. Payload
	2.1.1.3. Signature

	2.1.2. Putting all together
	2.1.2.1. AccessToken

	2.1.3. JWKS Validation

	2.2. OIDC Authentication

	3. Role Based Access Control (RBAC)
	3.1. CTRLD Authorization Configuration
	3.1.1. Activate or Deactivate Authorization in CTRLD

	3.2. RBFS Authorization configuration
	3.2.1. RBFS Role Configuration via REST
	3.2.2. RBFS Authorization CLI Configurations

	4. SSH with TACACS+
	4.1. RTB-PAM Token
	4.2. SSH User Prompt
	4.3. User Login Flow
	4.3.1. RTB

	4.4. In-Band and Out-of-Band TACACS user SSH Login
	4.4.1. In-band TACACS user SSH Login
	4.4.2. Out-of-band TACACS user SSH Login

	4.5. Configuring TACACS+ for RBFS
	4.5.1. Example: TACACS User Configuration in the TACACS Server
	4.5.2. Troubleshooting NSS User Lookup Issues
	4.5.3. SSH User Login Logs

	4.6. Role-based Access Configuration

