;; tbrick

RBMS Template Engine

Version 21.10.1, 01 November 2021

RBMS Template Engine

Registered Address Support Sales

26, Kingston Terrace, Princeton,
New Jersey 08540, United States

+91 80 4850 5445

http://www.rtbrick.com support@rtbrick.com sales@rtbrick.com

©Copyright 2021 RtBrick, Inc. All rights reserved. The information contained herein
is subject to change without notice. The trademarks, logos and service marks
("Marks") displayed in this documentation are the property of RtBrick in the United
States and other countries. Use of the Marks are subject to RtBrick's Term of Use
Policy, available at https://www.rtbrick.com/privacy. Use of marks belonging to
other parties is for informational purposes only.

http://www.rtbrick.com
mailto:support@rtbrick.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

RBMS Template Engine

Table of Contents

1. RBMS Template Engine
1.1. Template Folder structure
1.2. Template config
1.3. GO Lang Template Engine
1.4. Example
1.5. TestKit

o Ul AW WW

RBMS Template Engine

1. RBMS Template Engine

The RBMS Template Engine is an execution engine for templates. A folder in the
filesystem serves as template storage for the engine. The content of the folder
follows a convention.

1.1. Template Folder structure
Template folder structure

t enpl at es
| -- includes
| | -- <include-tenpl at e>. goj son
| -- <tenpl ate nanme>
| -- config.yamn
| -- <include-tenpl at e>. goj son
| -- <main-tenpl at e>. goj son

The template engine uses one templates folder where all the templates are stored.
Each template resides in his own folder, the folder name is the template name.
The config.yaml file inside a template folder indicates that this folder is a template.
In this file also other configurations for the template engine can be made.

The template folder contains one main-template and can contain multiple
“include-templates. The include-templates can be included into the main template.

Folders that don't contain a config.yaml are not treated as templates. This folders
can be used as containers for other include-template files.

1.2. Template config

This section describes the config.yaml file. Image this folder structure for the next
examples.

Simple example folder structure

t enpl at es
| -- includes
| | -- gl obal _i ncl ude. goj son
| -- sanple
| -- config.yamn

| -- local _include. gojson
| -- main.gojson

Here there is a main-template which includes the local_include-template and the
global_include-template. The config.yaml is used by the template engine to parse
the right files, so that the include-directives work.

RBMS Template Engine

templates/sample/config.yaml

engi ne: gol ang
mai n_t enpl ate: "mai n. goj son"
nmai n_pattern: "*.gojson"
i nclude_pattern: "includes/*. gojson"
post _processors:
- renoveTrail i ngComas
- prettyJSON

Table 1. config.yaml attributes

Attribute Default Description

engine golang selects the template engine, at the moment only
golang is supported

main_templ none points to the entrypoint of the rendering process, this

ate template is used as the top most, it hast to be
included in the main pattern.

main_patter none describes which files the engine should parse from

n the template folder.

include_patt none describes which files the engine should additionally

ern parse relative to the templates folder.

post_proces none allows to specify post processors that are used in that

sors order on top of the generated output.

Table 2. Post processors

Attribute Description

removeTrailing removes in json files the commas which are not valid, this makes

Commas the template much easier

removeEmptyLi removes empty lines

nes

pretty)]SON Pretty converts the input json into a more human readable
format where each element is on it's own line with clear
indentation

ugly)]SON Ugly removes insignificant space characters from the input json

byte slice and returns the compacted result.

1.3. GO Lang Template Engine

The default engine is the golang template engine. This gives some links to more
detailed information.

The GO Lange template engine is based on:

RBMS Template Engine

« GolLang test template
The golang text template engine. This allows evaluating arguments, execute
actions and include other templates.

* sprig functions
Beside of the default functions golang already provides, the sprig function
library is added to the engine.

1.4. Example

This section shows a simple example, that covers a lot of functionality of the
templates.

The example uses the following folder structure. Each file will be described in more
detail.

Full example folder structure

t enpl at es
| -- includes
| | -- gl obal _i ncl ude. goj son
| -- sanple
| -- config.yam

| -- exanpl e_vari abl es. j son
| -- local _include. gojson
| -- main.gojson

The template is called sample, because there is a config.yaml in the folder sample.
templates/sample/config.yam|

engi ne: gol ang
nmai n_tenpl ate: "main. gojson"
mai n_pattern: "*.gojson"
i ncl ude_pattern: "includes/*.gojson"
post _processors:
- renoveTrai |l i ngConmas
- prettyJSON

The config.yaml file states that the main_template is called main.gojson, so thats
the entrypoint for the generation.

The main_pattern defines this files templates/sample/*.gojson should be parsed
into the template engine, so also the main_pattern is included.

The include_patterns defines this files templates/includes/*.gojson should be
parsed into the template engine.

The post_processors are used to remove the trailing commas and make the JSON
output more readable.

https://golang.org/pkg/text/template/
http://masterminds.github.io/sprig/

RBMS Template Engine

Let's expect the following example variables structure.

templates/sample/example_variables.json

{
"description": "sanple",
"interfaces": [
{
"name": "ifp_0/0/1",
“ipv4": "127.0.0.1",
"x": 5,
"y': 3
b {
"name": "ifp_0/0/2",
"ipv4": "127.0.0.2",
X" 4,
"y'i 4
}
]
}

The this variables can be used to fill a template.
templates/sample/main.gojson

{{define "t1"}}

"hostname": "static",
{{end}}
{
{{template "t1"}}
"description": "{{.description}}",
"interfaces": {
{{tenplate "l ocal _i nclude. gojson" .interfaces}}
Ji -
"list": {{tenplate "gl obal _include. gojson" .}}
}

This templates starts with a definition of a new template t1 that will be used in this
template.

This template t1 is included immediately after {.

Then the description is added, the selection from the variable is done via the
.description.

For the interfaces we use the local template local_include.gojson, the variables that
are forwarded to the template are the .interfaces so only the array of the original
variable set.

To render the list we include the global_include.gojson template and forward the
original variable set.

RBMS Template Engine

templates/sample/local_include.gojson

{{range .}}
“{{.nane}}": {
ipt t{{.ipva}},
"1000/ x*y": {{div 10000 (rmul .x .y) }},
I
{{end}}

The local_include.gojson iterates over the interfaces list and prints the name and
ip-address of the interface.

Also a simple computation is done by using the sprig functions div.and mul.
templates/includes/global_include.gojson

[
{{range .interfaces}}"{{.nane}}", {{end}}

]

The global_include.gojson iterates over the interfaces list and prints in an array.

This json template does not create a valid json. The commas are
not set correct. The document is not well formatted. Therefore it
6 is easier to create the templates. To create a syntactically correct

and well formatted document we use post processors. The syntax
is corrected by removeTrailingCommas™ post processor. The
format is corrected by the pretty]SON post processor.

The next source block shows the expected outcome when applying the variables
from above to the template.

http://masterminds.github.io/sprig/

RBMS Template Engine

templates/sample/example_result.json

{
"description": "sanple",
"host nane": "static",
"interfaces": {
"ifp_0/0/1": {
"1000/ x*y": 666,
"ip": "127.0.0.1"

}1

"ifp_0/0/2": {
"1000/ x*y": 625,
"jp": "127.0.0.2"

}
)i o
"list": [

"ifp_0/0/1",

"ifp_0/0/2"

]
}

1.5. TestKit

In order to do a fast template prototyping we developed a test kit. The test kit
allows to execute a template with a given variable set and validate the outcome
against an expected result.

To execute we have to specify:

+ templatePath: Template main folder (default ".")
« template: Template name

« format: File format [txt, json, json5] (default "txt")

So for example if we execute template-engine-test -template sample -test example
-format json inside the templates folder, this command will execute the sample
template with the content of the example_variables.json file as input variables.
After execution the outcome is stored in the example_got.json file, and validated
against the example_result.json file. The format not only specifies the file endings,
it also specifies how the validation is done. So for example the json format does
not care about ordering of whitespace differences.

	RBMS Template Engine
	Table of Contents
	1. RBMS Template Engine
	1.1. Template Folder structure
	1.2. Template config
	1.3. GO Lang Template Engine
	1.4. Example
	1.5. TestKit

